Nonlinear degenerate cross-diffusion systems with nonlocal interaction

We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure.

[1]  A. Ōkubo,et al.  MODELLING SOCIAL ANIMAL AGGREGATIONS , 1994 .

[2]  Maria Bruna,et al.  Diffusion of multiple species with excluded-volume effects. , 2012, The Journal of chemical physics.

[3]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[4]  Riccarda Rossi,et al.  Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces , 2003 .

[5]  Vincenzo Capasso,et al.  Modeling the aggregative behavior of ants of the species Polyergus rufescens , 2000 .

[6]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[7]  P. Markowich,et al.  Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  M. Peletier,et al.  Mechanics of dislocation pile-ups: A unification of scaling regimes , 2012, 1208.5727.

[9]  Ansgar Jüngel,et al.  The boundedness-by-entropy method for cross-diffusion systems , 2015 .

[10]  Marie-Therese Wolfram,et al.  Opinion dynamics: inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  C. Villani Topics in Optimal Transportation , 2003 .

[12]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[13]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[14]  Lorenzo Pareschi,et al.  Reviews , 2014 .

[15]  Martin Burger,et al.  Nonlinear Cross-Diffusion with Size Exclusion , 2010, SIAM J. Math. Anal..

[16]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[17]  Fabricio Macià,et al.  Two-species-coagulation approach to consensus by group level interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[19]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[20]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[21]  Raimund Bürger,et al.  On nonlocal conservation laws modelling sedimentation , 2011 .

[22]  Angela Stevens,et al.  A Note on non-simultaneous blow-up for a drift-diffusion model , 2010, Differential and Integral Equations.

[23]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[24]  J. Vázquez The Porous Medium Equation , 2006 .

[25]  W. Rudin Real and complex analysis , 1968 .

[26]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[27]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[28]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[29]  A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts , 2016, 1606.04793.

[30]  M. Laborde On some non linear evolution systems which are perturbations of Wasserstein gradient flows , 2015, 1506.00126.

[31]  Jonathan Zinsl,et al.  Transport distances and geodesic convexity for systems of degenerate diffusion equations , 2014, 1409.6520.

[32]  R. Colombo,et al.  Nonlocal Crowd Dynamics Models for Several Populations , 2011, 1110.3596.

[33]  Carlos Conca,et al.  Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.

[34]  D. Matthes,et al.  Curves of steepest descent are entropy solutions for a class of degenerate convection–diffusion equations , 2012, 1208.0789.

[35]  Ansgar Jungel,et al.  The boundedness-by-entropy principle for cross-diffusion systems , 2014, 1403.5419.

[36]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[37]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .

[38]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[39]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[40]  Remarks on continuity equations with nonlinear diffusion and nonlocal drifts , 2016 .

[41]  L. Ambrosio,et al.  Chapter 1 – Gradient Flows of Probability Measures , 2007 .

[42]  T. Vicsek,et al.  Simulation of pedestrian crowds in normal and evacuation situations , 2002 .

[43]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[44]  C. Villani The founding fathers of optimal transport , 2009 .

[45]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[46]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[47]  T. Kolokolnikov,et al.  A minimal model of predator–swarm interactions , 2014, Journal of The Royal Society Interface.

[48]  Marco Di Francesco,et al.  A nonlocal swarm model for predators–prey interactions , 2016 .

[49]  Danielle Hilhorst,et al.  A NONLINEAR PARABOLIC-HYPERBOLIC SYSTEM FOR CONTACT INHIBITION OF CELL-GROWTH , 2012 .

[50]  Luigi Preziosi,et al.  Multiphase Models of Tumor Growth: General Framework and Particular Cases , 2003 .

[51]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[52]  Everywhere Regularity of Solutions to a Class of Strongly Coupled Degenerate Parabolic Systems , 2006 .

[53]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[54]  C. Villani Optimal Transport: Old and New , 2008 .

[55]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[56]  G. Toscani Kinetic and Hydrodynamic Models of Nearly Elastic Granular Flows , 2004 .

[57]  Didier Schmitt,et al.  Blowup in Reaction-Diffusion Systems with Dissipation of Mass , 1997, SIAM Rev..

[58]  Bogdan-Vasile Matioc,et al.  A gradient flow approach to a thin film approximation of the Muskat problem , 2013 .

[59]  Cécile Appert-Rolland,et al.  Two-way multi-lane traffic model for pedestrians in corridors , 2011, Networks Heterog. Media.