Efficient method of adaptive sign detection for 4×4 determinants using a standard arithmetic processing unit
暂无分享,去创建一个
Norimasa Yoshida | Fujio Yamaguchi | Toshiya Yamauchi | Jun Doi | F. Yamaguchi | N. Yoshida | J. Doi | Toshiya Yamauchi
[1] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[2] Fujio Yamaguchi. A shift of playground for geometric processing from euclidean to homogeneous , 1998, The Visual Computer.
[3] Kokichi Sugihara,et al. A solid modelling system free from topological inconsistency , 1990 .
[4] Jorge Stolfi,et al. Oriented projective geometry , 1987, SCG '87.
[5] Fujio Yamaguchi,et al. Some basic geometric test conditions in terms of Plücker coordinates and Plücker coefficients , 1997, The Visual Computer.
[6] Christoph M. Hoffmann,et al. Geometric and Solid Modeling: An Introduction , 1989 .
[7] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[8] Mark Segal,et al. Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.
[9] Shigeyuki Suzuki,et al. Adaptive Sign Detection Method Using a Floating Point Processing Unit. Sign Detection for 3*3 Determinants. , 1997 .
[10] Steven Fortune,et al. Polyhedral modelling with exact arithmetic , 1995, Symposium on Solid Modeling and Applications.
[11] Norimasa Yoshida,et al. Solid Modeling Based on a New Paradigm , 1994, Comput. Graph. Forum.
[12] Kokichi Sugihara. Topologically Consistent Algorithms Realted to Convex Polyhedra , 1992, ISAAC.
[13] C. L. Liu,et al. Introduction to Combinatorial Mathematics. , 1971 .