Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells

[1]  C. Xia,et al.  A durability model for solid oxide fuel cell electrodes in thermal cycle processes , 2010 .

[2]  D. Ding,et al.  Ni-LnOx (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells , 2010 .

[3]  G. Meng,et al.  High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode , 2009 .

[4]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[5]  U. Starke,et al.  Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films , 2009 .

[6]  Zongping Shao,et al.  Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs , 2008 .

[7]  Yaohui Zhang,et al.  Characterization of GdBaCo2O5+δ cathode for IT-SOFCs , 2008 .

[8]  Z. Lü,et al.  Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode , 2008 .

[9]  D. Dong,et al.  Synthesis and electrochemical properties of (Pr–Nd)1−ySryMnO3−δ and (Pr1−xNdx)0.7Sr0.3MnO3−δ as cathode materials for IT-SOFC , 2008 .

[10]  S. Jiang,et al.  NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting , 2007 .

[11]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[12]  J. Kilner,et al.  Electrical properties of GdBaCo2O5+x for ITSOFC applications , 2006 .

[13]  Antonino S. Aricò,et al.  Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode SOFC , 2006 .

[14]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[15]  K. Hu,et al.  Structure and electrochemical properties of Sm0.5Sr0.5Co1 − xFexO3 − δ cathodes for solid oxide fuel cells , 2006 .

[16]  A. Feldhoff,et al.  A Cobalt‐Free Oxygen‐Permeable Membrane Based on the Perovskite‐Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3–δ , 2005 .

[17]  Y. Ando,et al.  Transport and magnetic properties of GdBaCo2O5+x single crystals : A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping , 2005, cond-mat/0501706.

[18]  Y. Ando,et al.  Achieving fast oxygen diffusion in perovskites by cation ordering , 2005, cond-mat/0501127.

[19]  B. Steele,et al.  Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria , 2002 .

[20]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[21]  H. Inaba,et al.  Thermal expansion of Gd-doped ceria and reduced ceria , 2000 .

[22]  F. Zheng,et al.  Phase Behavior of Lanthanum Strontium Manganites , 1999 .

[23]  J. D. Carter,et al.  Development of Solid‐Oxide Fuel Cells That Operate at 500°C , 1999 .

[24]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[25]  N. Imanishi,et al.  Ln1−xSrxCoO3(Ln = Sm, Dy) for the electrode of solid oxide fuel cells , 1997 .

[26]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[27]  J. Schoonman,et al.  Synthesis of strontium and barium cerate and their reaction with carbon dioxide , 1993 .

[28]  H. Lal,et al.  Defects and electrical conduction in mixed lanthanum transition metal oxides , 1988 .

[29]  A. Manthiram,et al.  The Influence of Oxygen Variation on the Crystal Structure and Phase Composition of the Superconductor YBa2Cu3O7_x , 1987 .

[30]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[31]  T. He,et al.  Electrochemical performances of LaBaCuFeO5+x and LaBaCuCoO5+x as potential cathode materials for intermediate-temperature solid oxide fuel cells , 2009 .

[32]  Xing-qin Liu,et al.  Preparation and electrical properties of La0.4Sr0.6Ni0.2Fe0.8O3 using a glycine nitrate process , 2005 .