Bayesian P-Splines

P-splines are an attractive approach for modeling nonlinear smooth effects of covariates within the additive and varying coefficient models framework. In this article, we first develop a Bayesian version for P-splines and generalize in a second step the approach in various ways. First, the assumption of constant smoothing parameters can be replaced by allowing the smoothing parameters to be locally adaptive. This is particularly useful in situations with changing curvature of the underlying smooth function or with highly oscillating functions. In a second extension, one-dimensional P-splines are generalized to two-dimensional surface fitting for modeling interactions between metrical covariates. In a last step, the approach is extended to situations with spatially correlated responses allowing the estimation of geoadditive models. Inference is fully Bayesian and uses recent MCMC techniques for drawing random samples from the posterior. In a couple of simulation studies the performance of Bayesian P-splines is studied and compared to other approaches in the literature. We illustrate the approach by two complex application on rents for flats in Munich and on human brain mapping.

[1]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[2]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[3]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[4]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[5]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[6]  W. Cleveland,et al.  Computational methods for local regression , 1991 .

[7]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[8]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[9]  Zehua Chen Fitting Multivariate Regression Functions by Interaction Spline Models , 1993 .

[10]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[11]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[12]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[13]  N Lange Statistical approaches to human brain mapping by functional magnetic resonance imaging. , 1996, Statistics in medicine.

[14]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[15]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[16]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[17]  G. Wahba,et al.  Hybrid Adaptive Splines , 1997 .

[18]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[19]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[20]  R. Kohn,et al.  A Bayesian approach to nonparametric bivariate regression , 1997 .

[21]  Paul H. C. Eilers,et al.  Direct generalized additive modeling with penalized likelihood , 1998 .

[22]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[23]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[24]  L. Knorr‐Held Conditional Prior Proposals in Dynamic Models , 1999 .

[25]  Semiparametric generalized linear models: Bayesian approaches , 1999 .

[26]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[27]  Matt P. Wand,et al.  A Comparison of Regression Spline Smoothing Procedures , 2000, Comput. Stat..

[28]  H. Rue Fast Sampling of Gaussian Markov Random Fields with Applications , 2000 .

[29]  David Ruppert,et al.  Theory & Methods: Spatially‐adaptive Penalties for Spline Fitting , 2000 .

[30]  D. Madigan,et al.  Correction to: ``Bayesian model averaging: a tutorial'' [Statist. Sci. 14 (1999), no. 4, 382--417; MR 2001a:62033] , 2000 .

[31]  S. Wood Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .

[32]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[33]  C Gössl,et al.  Dynamic models in fMRI , 2000, Magnetic resonance in medicine.

[34]  L. Fahrmeir,et al.  Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data , 2001 .

[35]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[36]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[37]  Christoff Gössl Bayesian Models in Functional Magnetic Resonance Imaging: Approaches for Human Brain Mapping , 2001 .

[38]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[39]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[40]  Charles Kooperberg,et al.  Spline Adaptation in Extended Linear Models (with comments and a rejoinder by the authors , 2002 .

[41]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[42]  M. Wand,et al.  Geoadditive models , 2003 .

[43]  C. McCulloch,et al.  Generalized Linear Mixed Models , 2005 .