$\imath$Schur Duality and Kazhdan-Lusztig basis expanded
暂无分享,去创建一个
[1] Lipeng Luo,et al. Schur Algebras and Quantum Symmetric Pairs With Unequal Parameters , 2018, International Mathematics Research Notices.
[2] S. Kolb,et al. The bar involution for quantum symmetric pairs , 2014, 1409.5074.
[3] Weiqiang Wang,et al. A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.
[4] George Lusztig,et al. Canonical bases arising from quantized enveloping algebras , 1990 .
[5] R. Carter. LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .
[6] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[7] Weiqiang Wang,et al. Canonical bases arising from quantum symmetric pairs of Kac–Moody type , 2018, Compositio Mathematica.
[8] Weiqiang Wang,et al. Canonical bases arising from quantum symmetric pairs , 2016, 1610.09271.
[9] P. Podles,et al. Introduction to Quantum Groups , 1998 .
[10] R. Macpherson,et al. A geometric setting for the quantum deformation of $GL_n$ , 1990 .
[11] George Lusztig,et al. Characters of reductive groups over a finite field , 1984 .
[12] Huanchen Bao. Kazhdan-Lusztig Theory of super type D and quantum symmetric pairs , 2016, 1603.05105.
[13] Yunchuan Yin. An Inversion Formula for -Relative Kazhdan–Lusztig Polynomials , 2009 .
[14] J. Kujawa,et al. Geometric Schur Duality of Classical Type , 2014, 1404.4000.
[15] Weiqiang Wang,et al. Positivity VS Negativity of Canonical Bases , 2015, Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES.
[16] G. Lusztig,et al. Canonical bases in tensor products. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[17] Du Jie. THE q-SCHUR ALGEBRA , 2000 .
[18] Hecke Algebras With Unequal Parameters , 2002, math/0208154.
[19] Michio Jimbo,et al. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .
[20] Wolfgang Soergel,et al. Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .
[21] Coideal Subalgebras and Quantum Symmetric Pairs , 2001, math/0103228.
[22] Vinay V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .
[23] G. Letzter. Symmetric Pairs for Quantized Enveloping Algebras , 1999 .
[24] THE $q$ -SCHUR ALGEBRAS AND $q$ -SCHUR DUALITIES OF FINITE TYPE , 2017, Journal of the Institute of Mathematics of Jussieu.
[25] Kazhdan-Lusztig polynomials and canonical basis , 1997, q-alg/9709042.
[26] S. Kolb,et al. Universal K-matrix for quantum symmetric pairs , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[27] Weiqiang Wang,et al. Multiparameter quantum Schur duality of type B , 2016, 1609.01766.
[28] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials , 1987 .
[29] David Kazhdan,et al. Schubert varieties and Poincar'e duality , 1980 .
[30] J. Brundan. Dual canonical bases and Kazhdan–Lusztig polynomials☆ , 2005, math/0509700.
[31] S. Kolb. Braided module categories via quantum symmetric pairs , 2017, Proceedings of the London Mathematical Society.
[32] P. Etingof,et al. Lectures on Quantum Groups , 2001 .