$\imath$Schur Duality and Kazhdan-Lusztig basis expanded

Expanding the classic work of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possibly non-parabolic) reflection subgroups of the Weyl group of type B. We formulate an ıSchur duality between an ıquantum group of type AIII (allowing black nodes in its Satake diagram) and a Hecke algebra of type B acting on a tensor space, providing a common generalization of Jimbo-Schur duality and Bao-Wang’s quasi-split ıSchur duality. The quasi-parabolic KL bases on quasi-permutation Hecke modules are shown to match with the ıcanonical basis on the tensor space. An inversion formula for quasi-parabolic KL polynomials is established via the ıSchur duality.

[1]  Lipeng Luo,et al.  Schur Algebras and Quantum Symmetric Pairs With Unequal Parameters , 2018, International Mathematics Research Notices.

[2]  S. Kolb,et al.  The bar involution for quantum symmetric pairs , 2014, 1409.5074.

[3]  Weiqiang Wang,et al.  A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.

[4]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[5]  R. Carter LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .

[6]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[7]  Weiqiang Wang,et al.  Canonical bases arising from quantum symmetric pairs of Kac–Moody type , 2018, Compositio Mathematica.

[8]  Weiqiang Wang,et al.  Canonical bases arising from quantum symmetric pairs , 2016, 1610.09271.

[9]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[10]  R. Macpherson,et al.  A geometric setting for the quantum deformation of $GL_n$ , 1990 .

[11]  George Lusztig,et al.  Characters of reductive groups over a finite field , 1984 .

[12]  Huanchen Bao Kazhdan-Lusztig Theory of super type D and quantum symmetric pairs , 2016, 1603.05105.

[13]  Yunchuan Yin An Inversion Formula for -Relative Kazhdan–Lusztig Polynomials , 2009 .

[14]  J. Kujawa,et al.  Geometric Schur Duality of Classical Type , 2014, 1404.4000.

[15]  Weiqiang Wang,et al.  Positivity VS Negativity of Canonical Bases , 2015, Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES.

[16]  G. Lusztig,et al.  Canonical bases in tensor products. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Du Jie THE q-SCHUR ALGEBRA , 2000 .

[18]  Hecke Algebras With Unequal Parameters , 2002, math/0208154.

[19]  Michio Jimbo,et al.  A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .

[20]  Wolfgang Soergel,et al.  Kazhdan-Lusztig polynomials and a combinatoric for tilting modules , 1997 .

[21]  Coideal Subalgebras and Quantum Symmetric Pairs , 2001, math/0103228.

[22]  Vinay V. Deodhar Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .

[23]  G. Letzter Symmetric Pairs for Quantized Enveloping Algebras , 1999 .

[24]  THE $q$ -SCHUR ALGEBRAS AND $q$ -SCHUR DUALITIES OF FINITE TYPE , 2017, Journal of the Institute of Mathematics of Jussieu.

[25]  Kazhdan-Lusztig polynomials and canonical basis , 1997, q-alg/9709042.

[26]  S. Kolb,et al.  Universal K-matrix for quantum symmetric pairs , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[27]  Weiqiang Wang,et al.  Multiparameter quantum Schur duality of type B , 2016, 1609.01766.

[28]  Vinay V. Deodhar On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials , 1987 .

[29]  David Kazhdan,et al.  Schubert varieties and Poincar'e duality , 1980 .

[30]  J. Brundan Dual canonical bases and Kazhdan–Lusztig polynomials☆ , 2005, math/0509700.

[31]  S. Kolb Braided module categories via quantum symmetric pairs , 2017, Proceedings of the London Mathematical Society.

[32]  P. Etingof,et al.  Lectures on Quantum Groups , 2001 .