QSPR/QSAR analyses by means of the CORAL software: Results, challenges, perspectives

In this chapter, the methodology of building up quantitative structure—property/activity relationships (QSPRs/QSARs)—by means of the CORAL software is described. The Monte Carlo method is the basis of this approach. Simplified Molecular Input-Line Entry System (SMILES) is used as the representation of the molecular structure. The conversion of SMILES into the molecular graph is available for QSPR/ QSAR analysis using the CORAL software. The model for an endpoint is a mathematical function of

[1]  Jerzy Leszczynski,et al.  CORAL: QSPR model of water solubility based on local and global SMILES attributes. , 2013, Chemosphere.

[2]  Andrey A Toropov,et al.  Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO(2) nanoparticles. , 2013, Chemosphere.

[3]  Jerzy Leszczynski,et al.  QSAR modeling of measured binding affinity for fullerene-based HIV-1 PR inhibitors by CORAL , 2010 .

[4]  Kunal Roy,et al.  QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors. , 2010, Journal of hazardous materials.

[5]  Emilio Benfenati,et al.  QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations. , 2010, European journal of medicinal chemistry.

[6]  Jerzy Leszczynski,et al.  CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives , 2011, Molecular Diversity.

[7]  A. Monge,et al.  New 3-[4-(aryl)piperazin-1-yl]-1-(benzo[b]thiophen-3-yl)propane derivatives with dual action at 5-HT1A serotonin receptors and serotonin transporter as a new class of antidepressants. , 2001, European journal of medicinal chemistry.

[8]  Peter C. Jurs,et al.  Prediction of Aqueous Solubility of Organic Compounds , 1994 .

[9]  Mihai V. Putz,et al.  Alert-QSAR. Implications for Electrophilic Theory of Chemical Carcinogenesis , 2011, International journal of molecular sciences.

[10]  Paul J Hergenrother,et al.  The complex role of the triphenylmethyl motif in anticancer compounds. , 2008, Journal of the American Chemical Society.

[11]  Ivan Gutman Topological analysis of Eigenvalues of the adjacency matrices in graph theory: A difficulty with the concept of internal connectivity , 1988 .

[12]  Ovidiu Ivanciuc,et al.  Quantitative Structure—Property Relationship Study of Normal Boiling Points for Halogen-/ Oxygen-/ Sulfur-Containing Organic Compounds Using the CODESSA Program , 1998 .

[13]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[14]  T. Öberg A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction , 2005 .

[15]  Andrey A. Toropov,et al.  QSAR modeling of toxicity on optimization of correlation weights of Morgan extended connectivity , 2002 .

[16]  Jerzy Leszczynski,et al.  Comprehension of drug toxicity: Software and databases , 2014, Comput. Biol. Medicine.

[17]  G. Melagraki,et al.  QSAR study on para-substituted aromatic sulfonamides as carbonic anhydrase II inhibitors using topological information indices. , 2006, Bioorganic & medicinal chemistry.

[18]  T. Puzyn,et al.  Computational Techniques Application in Environmental Exposure Assessment , 2015 .

[19]  Jerzy Leszczynski,et al.  QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines exhibiting anticancer activity by optimal SMILES-based descriptors , 2010 .

[20]  K R Scott,et al.  Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. , 2001, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  Kunal Roy,et al.  Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection , 2011 .

[22]  Hagai Ginsburg,et al.  Arylpiperazines displaying preferential potency against chloroquine-resistant strains of the malaria parasite Plasmodium falciparum. , 2005, Biochemical pharmacology.

[23]  Emilio Benfenati,et al.  The definition of the molecular structure for potential anti-malaria agents by the Monte Carlo method , 2013, Structural Chemistry.

[24]  A. Balaban Highly discriminating distance-based topological index , 1982 .

[25]  Emin Sarıpınar,et al.  Application of electron conformational–genetic algorithm approach to 1,4-dihydropyridines as calcium channel antagonists: pharmacophore identification and bioactivity prediction , 2011, Journal of Molecular Modeling.

[26]  M. Teijeira,et al.  GETAWAY descriptors to predicting A(2A) adenosine receptors agonists. , 2005, European journal of medicinal chemistry.

[27]  Milan Randic,et al.  Optimal Molecular Descriptors Based on Weighted Path Numbers , 1999, J. Chem. Inf. Comput. Sci..

[28]  Pablo R Duchowicz,et al.  QSAR study for carcinogenicity in a large set of organic compounds. , 2012, Current drug safety.

[29]  Milan Randic,et al.  A New Descriptor for Structure-Property and Structure-Activity Correlations , 2001, J. Chem. Inf. Comput. Sci..

[30]  Emilio Benfenati,et al.  QSAR modeling of endpoints for peptides which is based on representation of the molecular structure by a sequence of amino acids , 2012, Structural Chemistry.

[31]  Jouko Yliruusi,et al.  Prediction of physicochemical properties based on neural network modelling. , 2003, Advanced drug delivery reviews.

[32]  Albert J. Leo,et al.  Quantitative Structure-Activity Relationships in Drug-Design , 1975 .

[33]  A A Toropov,et al.  Aconitum and Delphinium Diterpenoid Alkaloids of Local Anesthetic Activity: Comparative QSAR Analysis Based on GA-MLRA/PLS and Optimal Descriptors Approach , 2014, Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.

[34]  J. Poupaert,et al.  Anticonvulsant activity and interactions with neuronal voltage-dependent sodium channel of analogues of ameltolide. , 1998, Journal of medicinal chemistry.

[35]  P. Achary,et al.  Simplified molecular input line entry system-based optimal descriptors: QSAR modelling for voltage-gated potassium channel subunit Kv7.2 , 2014, SAR and QSAR in environmental research.

[36]  David Weininger,et al.  SMILES. 2. Algorithm for generation of unique SMILES notation , 1989, J. Chem. Inf. Comput. Sci..

[37]  M. Randic Characterization of molecular branching , 1975 .

[38]  Giuseppina C. Gini,et al.  CORAL: Quantitative structure–activity relationship models for estimating toxicity of organic compounds in rats , 2011, J. Comput. Chem..

[39]  Vilma Edite Fonseca Heinzen,et al.  Semi-empirical topological index: development of QSPR/QSRR and optimization for alkylbenzenes. , 2008, Talanta.

[40]  Kunal Roy,et al.  Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment , 2015 .

[41]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[42]  Apilak Worachartcheewan,et al.  QSAR Study of H1N1 Neuraminidase Inhibitors from Influenza a Virus , 2014 .

[43]  Marjan Vracko,et al.  A Study of Structure-Carcinogenic Potency Relationship with Artificial Neural Networks. The Using of Descriptors Related to Geometrical and Electronic Structures , 1997, J. Chem. Inf. Comput. Sci..

[44]  K R Scott,et al.  Synthesis and anticonvulsant activity of enaminones. Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives. , 2003, European journal of medicinal chemistry.

[45]  Komal Sharma,et al.  Quantitative structure pharmacokinetic relationship modeling of Cephalosporins : Elimination half-life , 2016 .

[46]  Jerzy Leszczynski,et al.  CORAL: Models of toxicity of binary mixtures , 2012 .

[47]  Bahram Hemmateenejad,et al.  Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and genetic algorithm‐based PCR , 2004 .

[48]  A. Toropova,et al.  Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants , 2001 .

[49]  Martin Egginger,et al.  Material Solubility‐Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells , 2009 .

[50]  M. Natália D. S. Cordeiro,et al.  QSAR-Based Studies of Nanomaterials in the Environment , 2017 .

[51]  Andrey A Toropov,et al.  SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT(1A) receptor ligands using CORAL. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[52]  Karel Nesmerak,et al.  Quantitative structure–property relationships of new benzoxazines and their electrooxidation as a model of metabolic degradation , 2005 .

[53]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[54]  Karel Nesmerak,et al.  SMILES-based quantitative structure–retention relationships for RP HPLC of 1-phenyl-5-benzylsulfanyltetrazoles , 2013, Structural Chemistry.

[55]  S. Kombian,et al.  Anticonvulsant evaluation and mechanism of action of benzylamino enaminones. , 2006, Bioorganic & medicinal chemistry.

[56]  Haralambos Sarimveis,et al.  Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model , 2006 .

[57]  Mark T D Cronin,et al.  Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. , 2002, Chemosphere.

[58]  K R Scott,et al.  Influence of multidrug resistance (MDR) proteins at the blood-brain barrier on the transport and brain distribution of enaminone anticonvulsants. , 2001, Journal of pharmaceutical sciences.

[59]  Maykel Pérez González,et al.  QSAR modeling of the rodent carcinogenicity of nitrocompounds. , 2008, Bioorganic & medicinal chemistry.

[60]  Andrey A Toropov,et al.  SMILES‐Based QSAR Models for the Calcium Channel‐Antagonistic Effect of 1,4‐Dihydropyridines , 2013, Archiv der Pharmazie.

[61]  E Benfenati,et al.  SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. , 2010, European journal of medicinal chemistry.

[62]  Vilma Edite Fonseca Heinzen,et al.  Semi-empirical topological index: a tool for QSPR/QSAR studies , 2005, Journal of molecular modeling.

[63]  L. Hammett,et al.  Some Relations between Reaction Rates and Equilibrium Constants. , 1935 .

[64]  Serdar Durdagi,et al.  3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[65]  K R Scott,et al.  Synthesis and anticonvulsant activity of enaminones. 4. Investigations on isoxazole derivatives. , 2002, European journal of medicinal chemistry.

[66]  Danail Bonchev,et al.  Topological order in molecules 1. Molecular branching revisited , 1995 .

[67]  Jerzy Leszczynski,et al.  Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study. , 2009, Chemosphere.

[68]  E. B. Melo,et al.  A new quantitative structure-property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors. , 2012 .

[69]  Kunal Roy,et al.  On Selection of Training and Test Sets for the Development of Predictive QSAR models , 2006 .

[70]  H. Wiener Vapor pressure-temperature relationships among the branched paraffin hydrocarbons. , 1948, The Journal of physical and colloid chemistry.

[71]  Andrey A. Toropov,et al.  Maximum Topological Distances Based Indices As Molecular Descriptors for QSPR: 2 - Application to Aromatic Hydrocarbons , 2000, Comput. Chem..

[72]  Roberto Todeschini,et al.  Comparison of Different Approaches to Define the Applicability Domain of QSAR Models , 2012, Molecules.

[73]  Jerzy Leszczynski,et al.  CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna , 2012 .

[74]  Zhirong Wang,et al.  Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. , 2007, Journal of hazardous materials.

[75]  Jerzy Leszczynski,et al.  SMILES‐based optimal descriptors: QSAR analysis of fullerene‐based HIV‐1 PR inhibitors by means of balance of correlations , 2009, J. Comput. Chem..

[76]  Alexander Golbraikh,et al.  Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection , 2002, J. Comput. Aided Mol. Des..

[77]  Alan Talevi,et al.  An integrated drug development approach applying topological descriptors. , 2012, Current computer-aided drug design.

[78]  David Weininger,et al.  SMILES, 3. DEPICT. Graphical depiction of chemical structures , 1990, J. Chem. Inf. Comput. Sci..

[79]  Naomi L Kruhlak,et al.  Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. , 2007, Advanced drug delivery reviews.

[80]  Boris Galabov,et al.  QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines with anticancer activity. , 2007, European journal of medicinal chemistry.

[81]  Maykel Pérez González,et al.  A new search algorithm for QSPR/QSAR theories: Normal boiling points of some organic molecules , 2005 .

[82]  Eduardo A. Castro,et al.  QSAR Study and Molecular Design of Open-Chain Enaminones as Anticonvulsant Agents , 2011, International journal of molecular sciences.

[83]  Eduardo A. Castro,et al.  QSAR on aryl-piperazine derivatives with activity on malaria , 2012 .

[84]  Pablo R Duchowicz,et al.  A comparative QSAR on 1,2,5-thiadiazolidin-3-one 1,1-dioxide compounds as selective inhibitors of human serine proteinases. , 2011, Journal of molecular graphics & modelling.

[85]  Shikha Gupta,et al.  Nano-QSAR modeling for predicting biological activity of diverse nanomaterials , 2014 .

[86]  Ivan Gutman,et al.  WIENER-TYPE TOPOLOGICAL INDICES , 1998 .

[87]  P. Roy,et al.  On Some Aspects of Variable Selection for Partial Least Squares Regression Models , 2008 .

[88]  Kunal Roy,et al.  First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines. , 2012, Chemosphere.

[89]  A. Bianucci,et al.  Prediction of hERG potassium channel affinity by the CODESSA approach. , 2006, Bioorganic & medicinal chemistry.

[90]  A. Monge,et al.  New 1-aryl-3-(4-arylpiperazin-1-yl)propane derivatives, with dual action at 5-HT1A serotonin receptors and serotonin transporter, as a new class of antidepressants. , 2001, Journal of medicinal chemistry.

[91]  Eduardo A. Castro,et al.  QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents , 2011 .

[92]  M. Randic,et al.  The connectivity index 25 years after. , 2001, Journal of molecular graphics & modelling.

[93]  Igor V. Tetko,et al.  Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices , 2001, J. Chem. Inf. Comput. Sci..

[94]  Andrey A Toropov,et al.  SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides. , 2013, European journal of medicinal chemistry.

[95]  Andrey A Toropov,et al.  CORAL software: prediction of carcinogenicity of drugs by means of the Monte Carlo method. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[96]  Jarmo Huuskonen,et al.  Estimation of Aqueous Solubility for a Diverse Set of Organic Compounds Based on Molecular Topology , 2000, J. Chem. Inf. Comput. Sci..

[97]  Li Zhang,et al.  Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. , 2007, Chemosphere.

[98]  Giuseppina C. Gini,et al.  Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical , 2012, J. Comput. Chem..

[99]  Andrey A. Toropov,et al.  QSPR modeling of the half-wave potentials of benzoxazines by optimal descriptors calculated with the SMILES , 2006, Comput. Biol. Chem..

[100]  Biye Ren Atom-type-based AI topological descriptors for quantitative structure–retention index correlations of aldehydes and ketones , 2003 .

[101]  Ivan Gutman Permanents of Adjacency Matrices and Their Dependence on Molecular Structure , 1998 .

[102]  Paola Gramatica,et al.  Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. , 2014, The Science of the total environment.

[103]  Milan Randic,et al.  The Variable Connectivity Index 1f versus the Traditional Molecular Descriptors: A Comparative Study of 1f Against Descriptors of CODESSA , 2001, J. Chem. Inf. Comput. Sci..

[104]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[105]  M. Randic,et al.  Graphs with the Same Detour Matrix , 1998 .

[106]  Kunal Roy,et al.  Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs. , 2011, Indian journal of biochemistry & biophysics.

[107]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[108]  Paul J Hergenrother,et al.  Triphenylmethylamides (TPMAs): Structure-activity relationship of compounds that induce apoptosis in melanoma cells. , 2008, Bioorganic & medicinal chemistry letters.

[109]  Jerzy Leszczynski,et al.  QSAR modeling of acute toxicity by balance of correlations. , 2008, Bioorganic & medicinal chemistry.