A Minimum-Residual Finite Element Method for the Convection-Diffusion Equation

Abstract : We present a minimum-residual finite element method for convection-diffusion problems in a higher order, adaptive, continuous Galerkin setting. The method borrows concepts from both the Discontinuous Petrov-Galerkin (DPG) method by Demkowicz and Gopalakrishnan [1] and the method of variational stabilization by Dahmen et al. [2], and it can also be interpreted as a variational multiscale method in which the fine-scales are defined through a dual-orthogonality condition. A key ingredient in the method is the proper choice of norm used to measure the residual, and we present two alternatives which are observed to be robust in both convection and diffusion-dominated regimes. Numerically obtained convergence rates are given in 2D, and benchmark numerical examples in all space dimensions are shown to illustrate the behavior of the method.

[1]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[2]  Leszek Demkowicz,et al.  Numerical simulations of cloaking problems using a DPG method , 2013 .

[3]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[4]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[5]  J. A. Cottrell Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method , 2007 .

[6]  Y. Maday,et al.  Optimal convergence properties of the FETI domain decomposition method , 2007 .

[7]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[8]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[11]  Raúl A. Feijóo,et al.  Adaptive finite element computational fluid dynamics using an anisotropic error estimator , 2000 .

[12]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[13]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[14]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[15]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[18]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[19]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[20]  Garrett. Barter,et al.  Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method , 2008 .

[21]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[22]  L. Demkowicz,et al.  Robust DPG method for convection-dominated di ffusion problems II: a natural in flow condition , 2012 .

[23]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[24]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[25]  Rob Stevenson,et al.  A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form , 2015 .

[26]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[27]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[28]  L. Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[29]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[30]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[31]  Martin Stynes,et al.  Convection-diffusion-reaction problems, SDFEM/SUPG and a priori meshes , 2007, Int. J. Comput. Sci. Math..

[32]  Norbert Heuer,et al.  Robust DPG Method for Convection-Dominated Diffusion Problems , 2013, SIAM J. Numer. Anal..

[33]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[34]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[35]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..