Low Frequency Electromagnetic Fields in High Contrast Media

Using variational principles we construct discrete network approximations for the Dirichlet to Neumann or Neumann to Dirichlet maps of high contrast, low frequency electromagnetic media.

[1]  Robert V. Kohn,et al.  Numerical implementation of a variational method for electrical impedance tomography , 1990 .

[2]  J. Ziman Principles of the Theory of Solids , 1965 .

[3]  Joseph B. Keller,et al.  Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders , 1963 .

[4]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[5]  Liliana Borcea,et al.  A hybrid numerical method for high contrast conductivity problems , 1997 .

[6]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[7]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[8]  D. Isaacson Distinguishability of Conductivities by Electric Current Computed Tomography , 1986, IEEE Transactions on Medical Imaging.

[9]  Alan C. Tripp,et al.  INVERSE CONDUCTIVITY PROBLEM FOR INACCURATE MEASUREMENTS , 1996 .

[10]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[11]  David L. Alumbaugh,et al.  Electromagnetic conductivity imaging with an iterative Born inversion , 1993, IEEE Trans. Geosci. Remote. Sens..

[12]  M. Neuman,et al.  Impedance computed tomography algorithm and system. , 1985, Applied optics.

[13]  Edward B Curtis,et al.  Determining the resistors in a network , 1990 .

[14]  Joseph B. Keller,et al.  Effective conductivity of periodic composites composed of two very unequal conductors , 1987 .

[15]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[16]  Fadil Santosa,et al.  Resolution and Stability Analysis of an Inverse Problem in Electrical Impedance Tomography: Dependence on the Input Current Patterns , 1994, SIAM J. Appl. Math..

[17]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[18]  Liliana Borcea,et al.  Asymptotic Analysis of Quasi-Static Transport in High Contrast Conductive Media , 1998, SIAM J. Appl. Math..

[19]  M. Cheney,et al.  Detection and imaging of electric conductivity and permittivity at low frequency , 1991, IEEE Transactions on Biomedical Engineering.

[20]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[21]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[22]  V. Isakov Appendix -- Function Spaces , 2017 .

[23]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[24]  James G. Berryman,et al.  Matching pursuit for imaging high-contrast conductivity , 1999 .

[25]  Jorge P. Zubelli,et al.  Diffuse tomography: computational aspects of the isotropic case , 1992 .

[26]  H. F. Morrison,et al.  Audio‐frequency electromagnetic tomography in 2-D , 1993 .

[27]  R. Kohn,et al.  Relaxation of a variational method for impedance computed tomography , 1987 .

[28]  Andrej Cherkaev,et al.  Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli , 1994 .

[29]  Fadil Santosa,et al.  Stability and resolution analysis of a linearized problem in electrical impedance tomography , 1991 .

[30]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[31]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[32]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[33]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[34]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[35]  H. F. Morrison,et al.  Monitoring subsurface changes over time with cross-well electromagnetic tomographyt1 , 1995 .

[36]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[37]  K. A. Dines,et al.  Analysis of electrical conductivity imaging , 1981 .

[38]  John Sylvester,et al.  The Dirichlet to Neumann map and applications , 1989 .

[39]  James G. Berryman,et al.  Weighted least-squares criteria for electrical impedance tomography , 1992, IEEE Trans. Medical Imaging.

[40]  S. Kozlov,et al.  Geometric aspects of averaging , 1989 .

[41]  Kohn,et al.  Variational constraints for electrical-impedance tomography. , 1990, Physical review letters.

[42]  M. Cheney,et al.  Distinguishability in impedance imaging , 1992, IEEE Transactions on Biomedical Engineering.

[43]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[44]  James A. Morrow,et al.  Circular planar graphs and resistor networks , 1998 .

[45]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[46]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[47]  J. Berryman Convexity properties of inverse problems with variational constraints , 1991 .

[48]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[49]  George Papanicolaou,et al.  Convection Enhanced Diffusion for Periodic Flows , 1994, SIAM J. Appl. Math..