A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs

We prove that, for a certain positive constant a and for an infinite set of values of n, the number of nonisomorphic triangular embeddings of the complete graph K"n is at least n^a^n^^^2. A similar lower bound is also given, for an infinite set of values of n, on the number of nonisomorphic triangular embeddings of the complete regular tripartite graph K"n","n","n.

[1]  Mike J. Grannell,et al.  BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.

[2]  G. Ringel Map Color Theorem , 1974 .

[3]  Prince Camille de Polignac On a Problem in Combinations , 1866 .

[4]  Seth R. Alpert,et al.  Twofold Triple Systems and Graph Imbeddings , 1975, J. Comb. Theory, Ser. A.

[5]  Vladimir P. Korzhik,et al.  Nonorientable biembeddings of Steiner triple systems , 2004, Discret. Math..

[6]  Vladimir P. Korzhik,et al.  On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.

[7]  Vladimir P. Korzhik,et al.  Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..

[8]  Seiya Negami,et al.  Three nonisomorphic triangulations of an orientable surface with the same complete graph , 1994, Discret. Math..

[9]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[10]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[11]  Vladimir P. Korzhik,et al.  Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.

[12]  Mike J. Grannell,et al.  Recursive constructions for triangulations , 2002 .

[13]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.