A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs
暂无分享,去创建一个
[1] Mike J. Grannell,et al. BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.
[2] G. Ringel. Map Color Theorem , 1974 .
[3] Prince Camille de Polignac. On a Problem in Combinations , 1866 .
[4] Seth R. Alpert,et al. Twofold Triple Systems and Graph Imbeddings , 1975, J. Comb. Theory, Ser. A.
[5] Vladimir P. Korzhik,et al. Nonorientable biembeddings of Steiner triple systems , 2004, Discret. Math..
[6] Vladimir P. Korzhik,et al. On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.
[7] Vladimir P. Korzhik,et al. Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..
[8] Seiya Negami,et al. Three nonisomorphic triangulations of an orientable surface with the same complete graph , 1994, Discret. Math..
[9] J. Gross,et al. Graph Theory and Its Applications , 1998 .
[10] Mike J. Grannell,et al. Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.
[11] Vladimir P. Korzhik,et al. Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.
[12] Mike J. Grannell,et al. Recursive constructions for triangulations , 2002 .
[13] Vladimir P. Korzhik,et al. Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.