Robust control of decoherence in realistic one-qubit quantum gates

We present an open-loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme.

[1]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[2]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[3]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[4]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[5]  Vitali,et al.  Macroscopic coherence via quantum feedback. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[7]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[8]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[9]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[11]  Quantum-state protection in cavities , 1998, quant-ph/9803045.

[12]  Gerard J. Milburn,et al.  Controlling the decoherence of a ''meter'' via stroboscopic feedback , 1997 .

[13]  Vitali,et al.  Effect of feedback on the decoherence of a Schrödinger-cat state: A quantum trajectory description. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[16]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[17]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[18]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[19]  D. Vitali,et al.  Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.

[20]  Autofeedback scheme for preservation of macroscopic coherence in microwave cavities , 1999, quant-ph/9902071.

[21]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[22]  N. G. van Kampen,et al.  A soluble model for quantum mechanical dissipation , 1995 .

[23]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[24]  G. J. Milburn,et al.  Non-Markovian homodyne-mediated feedback on a two-level atom: a quantum trajectory treatment , 2001 .

[25]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[26]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.