Successively accelerated ionic wind with integrated dielectric-barrier-discharge plasma actuator for low-voltage operation

Electrohydrodynamic (EHD) force is used for active control of fluid motion and for the generation of propulsive thrust by inducing ionic wind with no moving parts. We propose a method of successively generating and accelerating ionic wind induced by surface dielectric-barrier-discharge (DBD), referred to as a DBD plasma actuator with multiple electrodes. A conventional method fails to generate unidirectional ionic wind, due to the generation of a counter ionic-wind with the multiple electrodes DBD plasma actuator. However, unidirectional ionic wind can be obtained by designing an applied voltage waveform and electrode arrangement suitable for the unidirectional EHD force generation. Our results demonstrate that mutually enhanced EHD force is generated by using the multiple electrodes without generating counter ionic-wind and highlights the importance of controlling the dielectric surface charge to generate the strong ionic wind. The proposed method can induce strong ionic wind without a high-voltage power supply, which is typically expensive and heavy, and is suitable for equipping small unmanned aerial vehicles with a DBD plasma actuator for a drastic improvement in the aerodynamic performance.

[1]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[2]  Guillermo Artana,et al.  Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry , 2008 .

[3]  Influence of Voltage Waveform on Electrohydrodynamic Force in a Dielectric-Barrier-Discharge Plasma Actuator , 2017 .

[4]  Subrata Roy,et al.  Damping Tollmien–Schlichting waves in a boundary layer using plasma actuators , 2013 .

[5]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[6]  E. Moreau,et al.  Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control , 2007 .

[7]  A. Ficarella,et al.  Investigation of a Micro Dielectric Barrier Discharge Plasma Actuator for Regional Aircraft Active Flow Control , 2015, IEEE Transactions on Plasma Science.

[8]  W. Choe,et al.  The creation of electric wind due to the electrohydrodynamic force , 2018, Nature Communications.

[9]  Gabriele Neretti,et al.  Geometry optimization of linear and annular plasma synthetic jet actuators , 2016 .

[10]  David J. Perreault,et al.  Flight of an aeroplane with solid-state propulsion , 2018, Nature.

[11]  T. Mueller,et al.  AERODYNAMICS OF SMALL VEHICLES , 2003 .

[12]  Myron Robinson,et al.  A History of the Electric Wind , 1962 .

[13]  K. Takashima,et al.  Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses , 2011 .

[14]  Mikhail N. Shneider,et al.  Surface charge in dielectric barrier discharge plasma actuators , 2008 .

[15]  Leanne Pitchford,et al.  Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air , 2009 .

[16]  Guillermo Artana,et al.  Stall control at high angle of attack with plasma sheet actuators , 2006 .

[17]  J. Roth,et al.  Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma , 2000 .

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  J. Boeuf,et al.  Modelling of a nanosecond surface discharge actuator , 2009 .

[20]  Eric Moreau,et al.  Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control , 2014, Experiments in Fluids.

[21]  Experimental Characterization of Dual-Grounded Tri-Electrode Plasma Actuator , 2015 .

[22]  Three-dimensional simulations of discharge plasma evolution on a dielectric barrier discharge plasma actuator , 2014 .

[23]  Subrata Roy,et al.  Evaluation of thrust measurement techniques for dielectric barrier discharge actuators , 2012 .

[24]  C. Punset,et al.  Addressing and sustaining in alternating current coplanar plasma display panels , 1999 .

[25]  C. Borghi,et al.  Experimental Results in DBD Plasma Actuators for Air Flow Control , 2012, IEEE Transactions on Plasma Science.

[26]  N. Ohnishi,et al.  Theoretical modeling of pulse discharge cycle in dielectric barrier discharge plasma actuator , 2016 .

[27]  G D E Povel,et al.  Leading-Edge Vortex Lifts Swifts , 2004, Science.

[28]  M. Cappelli,et al.  Cross-talk in multiple dielectric barrier discharge actuators , 2008 .

[29]  T. Schneider,et al.  Eliminating Turbulence in Spatially Intermittent Flows , 2010, Science.

[30]  J. Kriegseis,et al.  Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry , 2013 .

[31]  Cameron Tropea,et al.  Experimental damping of boundary-layer oscillations using DBD plasma actuators , 2009 .

[32]  T. Kaneko,et al.  Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage , 2017 .

[33]  E. Moreau,et al.  Influence of a DC corona discharge on the airflow along an inclined flat plate , 2001 .

[34]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[35]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[36]  Enhanced electrohydrodynamic force generation in a two-stroke cycle dielectric-barrier-discharge plasma actuator , 2017 .

[37]  F. Thomas,et al.  Active and Passive Turbulent Boundary-Layer Drag Reduction , 2018, AIAA Journal.

[38]  E. Moreau,et al.  Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics , 2015 .

[39]  S. Zaidi,et al.  Non-thermal atmospheric pressure plasmas for aeronautic applications , 2009 .

[40]  Cameron Tropea,et al.  Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators , 2011 .

[41]  Mikhail N. Shneider,et al.  Improving Thrust by Suppressing Charge Build-up in Pulsed DBD Plasma Actuators , 2009 .

[42]  K.S.G. Krishnan,et al.  Review of hybrid laminar flow control systems , 2017 .

[43]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[44]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[45]  E. Moreau,et al.  Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications , 2012 .

[46]  I. Adamovich,et al.  Electric field distribution in a surface plasma flow actuator powered by ns discharge pulse trains , 2018, Plasma Sources Science and Technology.

[47]  T. Corke,et al.  SDBD plasma enhanced aerodynamics: concepts, optimization and applications , 2007 .

[48]  Konstantinos Kourtzanidis,et al.  Three-Electrode Sliding Nanosecond Dielectric Barrier Discharge Actuator: Modeling and Physics , 2017 .

[49]  Discharge Process and Gas Heating Effect in Nanosecond-Pulse-Driven Plasma Actuator , 2019, AIAA Scitech 2019 Forum.

[50]  F. Thomas,et al.  Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control , 2009 .