Biomarkers in the diagnosis of pleural diseases: a 2018 update

The use of biomarkers on pleural fluid (PF) specimens may assist the decision-making process and enhance clinical diagnostic pathways. Three paradigmatic examples are heart failure, tuberculosis and, particularly, malignancy. An elevated PF concentration of the amino-terminal fragment of probrain natriuretic peptide (>1500 pg/ml) is a hallmark of acute decompensated heart failure. Adenosine deaminase, interferon-γ and interleukin-27 are three valuable biomarkers for diagnosing tuberculous pleurisy, yet only the first has been firmly established in clinical practice. Diagnostic PF biomarkers for malignancy can be classified as soluble-protein based, immunocytochemical and nucleic-acid based. Soluble markers (e.g. carcinoembryonic antigen (CEA), carbohydrate antigen 15–3, mesothelin) are only indicative of cancer, but not confirmatory. Immunocytochemical studies on PF cell blocks allow: (a) to distinguish mesothelioma from reactive mesothelial proliferations (e.g. loss of BAP1 nuclear expression, complemented by the demonstration of p16 deletion using fluorescence in situ hybridization, indicate mesothelioma); (b) to separate mesothelioma from adenocarcinoma (e.g. calretinin, CK 5/6, WT-1 and D2-40 are markers of mesothelioma, whereas CEA, EPCAM, TTF-1, napsin A, and claudin 4 are markers of carcinoma); and (c) to reveal tumor origin in pleural metastases of an unknown primary site (e.g. TTF-1 and napsin A for lung adenocarcinoma, p40 for squamous lung cancer, GATA3 and mammaglobin for breast cancer, or synaptophysin and chromogranin A for neuroendocrine tumors). Finally, PF may provide an adequate sample for analysis of molecular markers to guide patients with non-small cell lung cancer to appropriate targeted therapies. Molecular testing must include, at least, mutations of epidermal growth-factor receptor and BRAF V600E, translocations of rat osteosarcoma and anaplastic lymphoma kinase, and expression of programmed death ligand 1.

[1]  Benjamin Solomon,et al.  Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology , 2018, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[2]  Jian-Xin Li,et al.  Metabonomic classification and detection of small molecule biomarkers of malignant pleural effusions , 2012, Analytical and Bioanalytical Chemistry.

[3]  T. Mafort,et al.  Predominance of Th1 Immune Response in Pleural Effusion of Patients with Tuberculosis among Other Exudative Etiologies , 2019, Journal of Clinical Microbiology.

[4]  Jing-jing Peng,et al.  Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion , 2017, Molecular medicine reports.

[5]  A. Aggarwal,et al.  Diagnostic Performance of Xpert MTB/RIF in Tuberculous Pleural Effusion: Systematic Review and Meta-analysis , 2016, Journal of Clinical Microbiology.

[6]  J. Porcel Pleural fluid biomarkers: beyond the Light criteria. , 2013, Clinics in chest medicine.

[7]  Yongwei Li,et al.  Diagnostic and prognostic utilities of humoral fibulin-3 in malignant pleural mesothelioma: Evidence from a meta-analysis , 2017, Oncotarget.

[8]  Kan Zhai,et al.  Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma: updated meta-analysis , 2014, BMJ Open.

[9]  B. Gu,et al.  Diagnostic Accuracy of Natriuretic Peptides for Heart Failure in Patients with Pleural Effusion: A Systematic Review and Updated Meta-Analysis , 2015, PloS one.

[10]  A. Aggarwal,et al.  Interferon Gamma Release Assays for Diagnosis of Pleural Tuberculosis: a Systematic Review and Meta-Analysis , 2015, Journal of Clinical Microbiology.

[11]  Anna Morley,et al.  Investigating unilateral pleural effusions: the role of cytology , 2018, European Respiratory Journal.

[12]  Kan Zhai,et al.  Diagnostic accuracy of interleukin 27 for tuberculous pleural effusion: two prospective studies and one meta-analysis , 2017, Thorax.

[13]  Clare Hooper,et al.  Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010 , 2010, Thorax.

[14]  J. M. Porcel,et al.  Utility of CEA and CA 15-3 measurements in non-purulent pleural exudates in the diagnosis of malignancy: A single-center experience. , 2017, Archivos de bronconeumologia.

[15]  J. M. Porcel,et al.  Derrame pleural tuberculoso: características clínicas de 320 pacientes , 2019, Archivos de Bronconeumología.

[16]  A. Fassina,et al.  Metabonomics by proton nuclear magnetic resonance in human pleural effusions: A route to discriminate between benign and malignant pleural effusions and to target small molecules as potential cancer biomarkers , 2017, Cancer cytopathology.

[17]  J. M. Porcel ¿Se debe realizar una biopsia pleural para el diagnóstico etiológico de los exudados? No , 2017 .

[18]  Su Jin Lee,et al.  Impact of Implementation of an Automated Liquid Culture System on Diagnosis of Tuberculous Pleurisy , 2015, Journal of Korean medical science.

[19]  M. Tötsch,et al.  The diagnostic role of BAP1 in serous effusions. , 2018, Human pathology.

[20]  M. Mathieu,et al.  Immunohistochemistry for Diagnosis of Metastatic Carcinomas of Unknown Primary Site , 2018, Cancers.

[21]  J. Huggins,et al.  Can tuberculous pleural effusions be diagnosed by pleural fluid analysis alone? , 2013, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[22]  R. Herbst,et al.  Treatment of Advanced Non-Small Cell Lung Cancer in 2018. , 2018, JAMA oncology.

[23]  J. M. Porcel,et al.  Use of a panel of tumor markers (carcinoembryonic antigen, cancer antigen 125, carbohydrate antigen 15-3, and cytokeratin 19 fragments) in pleural fluid for the differential diagnosis of benign and malignant effusions. , 2004, Chest.

[24]  Chuifeng Fan,et al.  Comparison of Epidermal Growth Factor Receptor Gene Mutations Identified Using Pleural Effusion and Primary Tumor Tissue Samples in Non–Small Cell Lung Cancer , 2017, Applied immunohistochemistry & molecular morphology : AIMM.

[25]  J. M. Porcel,et al.  Utilidad de la medición de CEA y CA 15-3 en los exudados pleurales no purulentos para diagnosticar malignidad: experiencia de un único centro , 2017 .

[26]  E. Alkhalili,et al.  Pleural Disease. , 2018, The New England journal of medicine.

[27]  Charles L Daley,et al.  Yield of sputum induction in the diagnosis of pleural tuberculosis. , 2003, American journal of respiratory and critical care medicine.

[28]  Qing Zhang,et al.  Comparison of laboratory testing methods for the diagnosis of tuberculous pleurisy in China , 2017, Scientific Reports.

[29]  T. Brüning,et al.  Circulating miR-132-3p as a Candidate Diagnostic Biomarker for Malignant Mesothelioma , 2017, Disease markers.

[30]  Yuan Yang,et al.  Diagnostic Accuracy of Combinations of Tumor Markers for Malignant Pleural Effusion: An Updated Meta-Analysis , 2017, Respiration.

[31]  C. Balañà,et al.  2018 consensus statement by the Spanish Society of Pathology and the Spanish Society of Medical Oncology on the diagnosis and treatment of cancer of unknown primary , 2018, Clinical and Translational Oncology.

[32]  R. Loddenkemper [The diagnosis of pleural effusions]. , 1992, Deutsche medizinische Wochenschrift.

[33]  Ziji Wei,et al.  Performance of osteopontin in the diagnosis of malignant pleural mesothelioma: a meta-analysis. , 2014, International journal of clinical and experimental medicine.

[34]  J. M. Porcel,et al.  Diagnostic Accuracy of Pleural Fluid Adenosine Deaminase for Diagnosing Tuberculosis. Meta-analysis of Spanish Studies. , 2019, Archivos de bronconeumologia.

[35]  J. M. Porcel,et al.  Diagnostic performance of adenosine deaminase activity in pleural fluid: a single-center experience with over 2100 consecutive patients. , 2010, European journal of internal medicine.

[36]  J. M. Porcel,et al.  Diagnosis and Management of Pleural Transudates , 2017 .

[37]  K. Azuma,et al.  A Combined test using both cell sediment and supernatant cell‐free DNA in pleural effusion shows increased sensitivity in detecting activating EGFR mutation in lung cancer patients , 2018, Cytopathology : official journal of the British Society for Clinical Cytology.

[38]  A. Velayati,et al.  Impact of HIV infection on tuberculous pleural effusion , 2016, International journal of STD & AIDS.

[39]  A. Rossi,et al.  Treatment of advanced non small cell lung cancer. , 2011, Journal of thoracic disease.

[40]  S. Bielsa,et al.  Pleural effusions in acute decompensated heart failure: Prevalence and prognostic implications. , 2018, European journal of internal medicine.

[41]  Jou-Wei Lin,et al.  Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area , 2012, Thorax.

[42]  J. M. Porcel,et al.  Development and validation of a scoring system for the identification of pleural exudates of cardiac origin. , 2017, European journal of internal medicine.

[43]  A. Gown,et al.  Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group. , 2018, Archives of pathology & laboratory medicine.

[44]  J. Foster,et al.  Diagnostic and Prognostic Biomarkers in the Rational Assessment of Mesothelioma (DIAPHRAGM) study: protocol of a prospective, multicentre, observational study , 2016, BMJ Open.

[45]  S. Hong,et al.  Loculated Tuberculous Pleural Effusion: Easily Identifiable and Clinically Useful Predictor of Positive Mycobacterial Culture from Pleural Fluid , 2016, Tuberculosis and respiratory diseases.

[46]  B. Ortiz-Quintero,et al.  Secreted and Tissue miRNAs as Diagnosis Biomarkers of Malignant Pleural Mesothelioma , 2018, International journal of molecular sciences.

[47]  Shaoqing Shi,et al.  Accuracy of interleukin-27 assay for the diagnosis of tuberculous pleurisy , 2017, Medicine.

[48]  T. Yusa [Treatment of malignant pleural mesothelioma]. , 2007, Gan to kagaku ryoho. Cancer & chemotherapy.

[49]  Concepción Martín,et al.  Is it meaningful to use biochemical parameters to discriminate between transudative and exudative pleural effusions? , 2002, Chest.

[50]  S. Bielsa,et al.  Tuberculous Pleural Effusion: Clinical Characteristics of 320 Patients. , 2019, Archivos de bronconeumologia.

[51]  W. Mooi,et al.  Pulmonary hypertensive vasculopathy in parenchymal lung diseases and/or hypoxia , 2017, European Respiratory Review.

[52]  J. M. Porcel,et al.  Comparison of polymorphonuclear- and lymphocyte-rich tuberculous pleural effusions. , 2013, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[53]  S. Bielsa,et al.  Biomarkers of heart failure in pleural fluid. , 2009, Chest.

[54]  J. Soriano,et al.  Recent epidemiological trends in tuberculous pleural effusion in Galicia, Spain. , 2012, European journal of internal medicine.

[55]  J. M. Porcel,et al.  Diagnosis and Management of Pleural Transudates. , 2017, Archivos de bronconeumologia.

[56]  S. Cha,et al.  Letter to the editor: Respective Contribution of Liquid and Solid Media to Mycobacterial Yields from Pleural Fluid in Tuberculous Pleural Effusion , 2015, Journal of Korean medical science.

[57]  Huanzhong Shi,et al.  Diagnostic value of interferon-gamma in tuberculous pleurisy: a metaanalysis. , 2007, Chest.

[58]  Ling Xu,et al.  Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms , 2019, Respiratory Research.

[59]  Rufu Xu,et al.  Diagnostic value of fibulin-3 for malignant pleural mesothelioma: A systematic review and meta-analysis , 2016, Oncotarget.

[60]  M. Slade,et al.  British Thoracic Society Guideline for the investigation and management of malignant pleural mesothelioma , 2018, Thorax.

[61]  Yangke Yu,et al.  Diagnostic Accuracy of Interleukin-27 between Tuberculous Pleural Effusion and Malignant Pleural Effusion: A Meta-Analysis , 2018, Respiration.

[62]  C. Bolliger,et al.  The yield of different pleural fluid volumes for Mycobacterium tuberculosis culture , 2012, Thorax.

[63]  Examination of cytological smears and cell blocks of pleural fluid: Complementary diagnostic value for malignant effusions. , 2017, Revista clinica espanola.

[64]  Renato Martins,et al.  NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 5.2018. , 2018, Journal of the National Comprehensive Cancer Network : JNCCN.

[65]  K. Rabe,et al.  Precision Diagnosis and Treatment for Advanced Non-Small-Cell Lung Cancer. , 2017, The New England journal of medicine.

[66]  J. M. Porcel,et al.  Identifying Thoracic Malignancies Through Pleural Fluid Biomarkers , 2016, Medicine.

[67]  Huanzhong Shi,et al.  Diagnostic Value of Interferon-γ in Tuberculous Pleurisy: A Metaanalysis , 2007 .

[68]  F. Galateau-Sallé,et al.  New Markers for Separating Benign From Malignant Mesothelial Proliferations: Are We There Yet? , 2016, Archives of pathology & laboratory medicine.

[69]  L. Bubendorf,et al.  Nonsmall cell lung carcinoma: diagnostic difficulties in small biopsies and cytological specimens , 2017, European Respiratory Review.

[70]  S. Roy-Chowdhuri Advances in Molecular Testing Techniques in Cytologic Specimens. , 2018, Surgical pathology clinics.

[71]  S. Armato,et al.  Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[72]  R. Molina,et al.  Evaluation of two strategies for the interpretation of tumour markers in pleural effusions , 2017, Respiratory Research.

[73]  Hayoung Choi,et al.  Clinical and Laboratory Differences between Lymphocyte- and Neutrophil-Predominant Pleural Tuberculosis , 2016, PloS one.

[74]  N. Maskell,et al.  ERS/EACTS statement on the management of malignant pleural effusions , 2018, European Respiratory Journal.

[75]  J. Porcel Advances in the diagnosis of tuberculous pleuritis. , 2016, Annals of translational medicine.

[76]  J. M. Porcel,et al.  Identifying transudates misclassified by Light's criteria , 2013, Current opinion in pulmonary medicine.

[77]  J. Park,et al.  Does repeated pleural culture increase the diagnostic yield of Mycobacterium tuberculosis from tuberculous pleural effusion in HIV-negative individuals? , 2017, PloS one.

[78]  G. Pescetti,et al.  [Pleural effusions]. , 1965, Aggiornamenti clinicoterapeutici.

[79]  J. M. Porcel,et al.  Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. , 2014, Archivos de bronconeumologia.

[80]  S. Monaco,et al.  Recent Advances in the Diagnosis of Malignant Mesothelioma: Focus on Approach in Challenging Cases and in Limited Tissue and Cytologic Samples , 2018, Advances in anatomic pathology.

[81]  J. M. Porcel,et al.  Etiología del derrame pleural: análisis de más de 3.000 toracocentesis consecutivas , 2014 .

[82]  J. M. Porcel The case against performing pleural biopsies for the aetiological diagnosis of exudates , 2017 .

[83]  J. Park,et al.  Different characteristics of tuberculous pleural effusion according to pleural fluid cellular predominance and loculation. , 2016, Journal of thoracic disease.

[84]  J. Creaney,et al.  Malignant Mesothelioma Biomarkers: From Discovery to Use in Clinical Practice for Diagnosis, Monitoring, Screening, and Treatment , 2017, Chest.