Reparameterization Gradient for Non-differentiable Models

We present a new algorithm for stochastic variational inference that targets at models with non-differentiable densities. One of the key challenges in stochastic variational inference is to come up with a low-variance estimator of the gradient of a variational objective. We tackle the challenge by generalizing the reparameterization trick, one of the most effective techniques for addressing the variance issue for differentiable models, so that the trick works for non-differentiable models as well. Our algorithm splits the space of latent variables into regions where the density of the variables is differentiable, and their boundaries where the density may fail to be differentiable. For each differentiable region, the algorithm applies the standard reparameterization trick and estimates the gradient restricted to the region. For each potentially non-differentiable boundary, it uses a form of manifold sampling and computes the direction for variational parameters that, if followed, would increase the boundary's contribution to the variational objective. The sum of all the estimates becomes the gradient estimate of our algorithm. Our estimator enjoys the reduced variance of the reparameterization gradient while remaining unbiased even for non-differentiable models. The experiments with our preliminary implementation confirm the benefit of reduced variance and unbiasedness.

[1]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[2]  Cameron Davidson-Pilon,et al.  Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference , 2015 .

[3]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[4]  Dustin Tran,et al.  Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..

[5]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[6]  U. V. Luxburg,et al.  Improving Variational Autoencoders with Inverse Autoregressive Flow , 2016 .

[7]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[8]  Alexander D'Amour,et al.  Reducing Reparameterization Gradient Variance , 2017, NIPS.

[9]  P. Diaconis,et al.  Sampling From A Manifold , 2012, 1206.6913.

[10]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[11]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[12]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[13]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[14]  Yee Whye Teh,et al.  Filtering Variational Objectives , 2017, NIPS.

[15]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[16]  E. Gumbel Statistical Theory of Extreme Values and Some Practical Applications : A Series of Lectures , 1954 .

[17]  David Wingate,et al.  Automated Variational Inference in Probabilistic Programming , 2013, ArXiv.

[18]  Jascha Sohl-Dickstein,et al.  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models , 2017, NIPS.

[19]  David A. Knowles Stochastic gradient variational Bayes for gamma approximating distributions , 2015, 1509.01631.

[20]  Rupak Majumdar,et al.  Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems , 2017, QEST.

[21]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[22]  Andriy Mnih,et al.  Variational Inference for Monte Carlo Objectives , 2016, ICML.

[23]  Tuan Anh Le,et al.  Auto-Encoding Sequential Monte Carlo , 2017, ICLR.

[24]  Sergey Levine,et al.  MuProp: Unbiased Backpropagation for Stochastic Neural Networks , 2015, ICLR.

[25]  Dougal Maclaurin,et al.  Modeling, Inference and Optimization With Composable Differentiable Procedures , 2016 .

[26]  Scott W. Linderman,et al.  Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms , 2016, AISTATS.

[27]  Scott W. Linderman,et al.  Variational Sequential Monte Carlo , 2017, AISTATS.

[28]  Tom Minka,et al.  A* Sampling , 2014, NIPS.

[29]  Richard E. Turner,et al.  Rényi Divergence Variational Inference , 2016, NIPS.

[30]  Sean Gerrish,et al.  Black Box Variational Inference , 2013, AISTATS.

[31]  Robert H. Shumway,et al.  Time Series Analysis and Its Applications (Springer Texts in Statistics) , 2005 .

[32]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[33]  David Duvenaud,et al.  Backpropagation through the Void: Optimizing control variates for black-box gradient estimation , 2017, ICLR.

[34]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[35]  David M. Blei,et al.  The Generalized Reparameterization Gradient , 2016, NIPS.

[36]  Sergey Levine,et al.  Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic , 2016, ICLR.

[37]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[38]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.