Capacitively-Coupled Chopper Amplifiers

As discussed in Chap. 1, capacitively coupled chopper amplifiers can potentially handle input common-mode voltages far beyond their own supplies. Furthermore, their inherent use of chopping means that they can also achieve microvolt offset and low 1/f noise.

[1]  Aamna Anil A High Efficiency Charge Pump for Low Voltage Devices , 2012, VLSIC 2012.

[2]  K. Kundert Simulating Switched-Capacitor Filters with SpectreRF , 2001 .

[3]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[4]  Wilko J. Kindt,et al.  A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping , 2010, IEEE Journal of Solid-State Circuits.

[5]  Kofi A. A. Makinwa,et al.  A chopper current-feedback instrumentation amplifier with a 1mHz 1/ƒ noise corner and an AC-coupled ripple-reduction loop , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Kofi A. A. Makinwa,et al.  A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[7]  K. Nagaraj,et al.  A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits , 1989 .

[8]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[9]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[10]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[11]  J.H. Huijsing,et al.  A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier , 2009, 2009 Symposium on VLSI Circuits.

[12]  Kofi A. A. Makinwa,et al.  A capacitively coupled chopper instrumentation amplifier with a ±30V common-mode range, 160dB CMRR and 5μV offset , 2012, 2012 IEEE International Solid-State Circuits Conference.

[13]  Fan Zhang,et al.  A 9 $\mu$ A, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2010, IEEE Journal of Solid-State Circuits.

[14]  Kofi A. A. Makinwa,et al.  A capacitively-coupled chopper operational amplifier with 3μV Offset and outside-the-rail capability , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[15]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[16]  K. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With 5 $\mu{\hbox{V}}$ Offset for Bidirectional High-Side Current-Sensing , 2008, IEEE Journal of Solid-State Circuits.

[17]  Martijn F. Snoeij,et al.  A 36V JFET-input bipolar operational amplifier with 1μV/°C maximum offset drift and −126dB total harmonic distortion , 2011, 2011 IEEE International Solid-State Circuits Conference.

[18]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[19]  Martin J. Burke,et al.  A micropower dry-electrode ECG preamplifier , 2000, IEEE Transactions on Biomedical Engineering.

[20]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error , 2011, IEEE Journal of Solid-State Circuits.

[21]  Kofi A. A. Makinwa,et al.  Dynamic Offset Compensated CMOS Amplifiers , 2009 .

[22]  M.F. Snoeij,et al.  A 36 V Programmable Instrumentation Amplifier With Sub-20 $\mu$V Offset and a CMRR in Excess of 120 dB at All Gain Settings , 2009, IEEE Journal of Solid-State Circuits.

[23]  K.A.A. Makinwa,et al.  A temperature-to-digital converter based on an optimized electrothermal filter , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[24]  Reid R. Harrison,et al.  A low-power, low-noise CMOS amplifier for neural recording applications , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[25]  J.G. Webster,et al.  AC instrumentation amplifier for bioimpedance measurements , 1993, IEEE Transactions on Biomedical Engineering.