Lower bound shakedown analysis in geotechnics

The paper describes some recent developments in the application of lower bound shakedown analysis to geotechnical problems. The theoretical basis of shakedown analysis is briefly reviewed along with the necessary finite element and optimization procedures. In terms of applications, the primary focus is on pavement design which is discussed in some detail.

[1]  H. Herrmann,et al.  Shakedown of unbound granular material , 2004, cond-mat/0404176.

[2]  C. Martin,et al.  Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming , 2006 .

[3]  Scott W. Sloan,et al.  Upper bound limit analysis using finite elements and linear programming , 1989 .

[4]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[5]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[6]  J. Barbera,et al.  Contact mechanics , 1999 .

[7]  Scott W. Sloan,et al.  Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming , 2007 .

[8]  John R. Booker,et al.  SHAKEDOWN OF PAVEMENTS UNDER MOVING SURFACE LOADS , 1984 .

[9]  Fredrick Lekarp,et al.  Modelling permanent deformation behaviour of unbound granular materials , 1998 .

[10]  Andrei V. Lyamin,et al.  Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact , 2007 .

[11]  H. Herrmann,et al.  Characterization of the material response in granular ratcheting. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. V. Lyamin,et al.  Bounds to Shakedown Loads for a Class of Deviatoric Plasticity Models , 2007 .

[13]  Steven C. Batterman Variational methods in elasticity and plasticity: Kyuichiro Washizu, Professor of Aeronautics and Astronautics, University of Tokyo. International Series of Monographs in Aeronautics and Astronautics, Division 1: Solid and Structural Mechanics, Vol. 9, published by Pergamon Press, London, 1968; x + , 1969 .

[14]  Ernst Melan,et al.  Zur Plastizität des räumlichen Kontinuums , 1938 .

[15]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[16]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[17]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[18]  Jos F. Sturm,et al.  Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..

[19]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[20]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[21]  Raúl A. Feijóo,et al.  Adaptive finite element computational fluid dynamics using an anisotropic error estimator , 2000 .

[22]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[23]  Scott W. Sloan,et al.  Lower bound limit analysis with adaptive remeshing , 2005 .

[24]  K. Dang Van,et al.  On some recent trends in modelling of contact fatigue and wear in rail , 2002 .