Inequality constrained analysis of variance: a Bayesian approach.

Researchers often have one or more theories or expectations with respect to the outcome of their empirical research. When researchers talk about the expected relations between variables if a certain theory is correct, their statements are often in terms of one or more parameters expected to be larger or smaller than one or more other parameters. Stated otherwise, their statements are often formulated using inequality constraints. In this article, a Bayesian approach to evaluate analysis of variance or analysis of covariance models with inequality constraints on the (adjusted) means is presented. This evaluation contains two issues: estimation of the parameters given the restrictions using the Gibbs sampler and model selection using Bayes factors in the case of competing theories. The article concludes with two illustrations: a one-way analysis of covariance and an analysis of a three-way table of ordered means.

[1]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Kazuo Anraku,et al.  An information criterion for parameters under a simple order restriction , 1999 .

[4]  P. Holland Statistics and Causal Inference , 1985 .

[5]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[6]  D. Rubin,et al.  Reducing Bias in Observational Studies Using Subclassification on the Propensity Score , 1984 .

[7]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[8]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[9]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[10]  H. Hoijtink Confirmatory Latent Class Analysis: Model Selection Using Bayes Factors and (Pseudo) Likelihood Ratio Statistics , 2001, Multivariate behavioral research.

[11]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[12]  H. Akaike Factor analysis and AIC , 1987 .

[13]  J. Stevens Applied Multivariate Statistics for the Social Sciences , 1986 .

[14]  M. Tatsuoka Multivariate Analysis Techniques for Educational and Psychological Research , 1971 .

[15]  R. Bargmann,et al.  Multivariate Analysis (Techniques for Educational and Psychological Research) , 1989 .

[16]  J. Marden,et al.  Hypothesis Testing: From p Values to Bayes Factors , 2000 .

[17]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[18]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[19]  Christian P. Robert,et al.  Maximum likelihood estimation under order restrictions by the prior feedback method , 1996 .

[20]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[21]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[22]  Pranab Kumar Sen,et al.  An appraisal of some aspects of statistical inference under inequality constraints , 2002 .

[23]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[24]  D. Lindley A STATISTICAL PARADOX , 1957 .

[25]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[26]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[27]  Robert Rosenthal,et al.  Repeated-measures contrasts for "multiple-pattern" hypotheses. , 2003, Psychological methods.

[28]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[29]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[30]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[31]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[32]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[33]  Hari Mukerjee,et al.  Order-restricted inferences in linear regression , 1995 .

[34]  M. J. Bayarri,et al.  P Values for Composite Null Models , 2000 .

[35]  Herbert Hoijtink,et al.  Bayesian model selection using encompassing priors , 2005 .

[36]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[37]  Govind S. Mudholkar,et al.  A Simple Approach to Testing Homogeneity of Order-Constrained Means , 1993 .

[38]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[39]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[40]  Andrew Rutherford,et al.  Introducing Anova and Ancova: A Glm Approach , 2000 .

[41]  D. Spiegelhalter,et al.  Bayes Factors and Choice Criteria for Linear Models , 1980 .