The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.

In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of functional imaging results. The human parietal operculum consists of four distinct cytoarchitectonic areas (OP 1-4) as shown in the preceding publication. The 10 cytoarchitectonically examined brains were 3-D-reconstructed and spatially normalized to the T1-weighted single-subject template of the Montreal Neurological Institute (MNI). A probabilistic map was calculated for each area in this standard stereotaxic space. A cytoarchitectonic summary map of the four cortical areas on the human parietal operculum which combines these probabilistic maps was subsequently computed for the comparison with a meta-analysis of functional locations of SII. The meta-analysis used the results from 57 fMRI and PET studies and allowed the comparison of the functionally defined SII region to the cytoarchitectonic map of the parietal operculum. The functional localization of SII showed a good match to the cytoarchitectonically defined region. Therefore the cytoarchitectonic maps of OP 1-4 of the human parietal operculum can be interpreted as an anatomical correlate of the (functionally defined) human SII region. Our results also suggest that the SII foci reported in functional imaging studies may actually reflect activations in either of its architectonic subregions.

[1]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[2]  H. Burton,et al.  Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis , 1980, The Journal of comparative neurology.

[3]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  O. Grüsser,et al.  Responses of Single Neurons in the Parietoinsular Vestibular Cortex of Primates a , 1988, Annals of the New York Academy of Sciences.

[6]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[7]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  J. Greenspan,et al.  Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum , 1992, Pain.

[9]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[10]  L. Krubitzer,et al.  Connections of somatosensory cortex in megachiropteran bats: The evolution of cortical fields in mammals , 1993, The Journal of comparative neurology.

[11]  M. Raichle,et al.  Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. , 1993, Somatosensory & motor research.

[12]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[13]  Alan C. Evans,et al.  Distributed processing of pain and vibration by the human brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  R. Passingham,et al.  Functional anatomy of the mental representation of upper extremity movements in healthy subjects. , 1995, Journal of neurophysiology.

[16]  P. Roland,et al.  Somatosensory Activations of the Parietal Operculum of Man. A PET Study , 1995, The European journal of neuroscience.

[17]  Mara Fabri,et al.  Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeys , 1995, The Journal of comparative neurology.

[18]  S. Kiebel,et al.  Brain Representation of Active and Passive Movements , 1996, NeuroImage.

[19]  Richard S. J. Frackowiak,et al.  Multiple nonprimary motor areas in the human cortex. , 1997, Journal of neurophysiology.

[20]  H Burton,et al.  Multiple foci in parietal and frontal cortex activated by rubbing embossed grating patterns across fingerpads: a positron emission tomography study in humans. , 1997, Cerebral cortex.

[21]  E G Jones,et al.  Hand/Face Border as a Limiting Boundary in the Body Representation in Monkey Somatosensory Cortex , 1997, The Journal of Neuroscience.

[22]  Karl Zilles,et al.  Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren , 1997, DAGM-Symposium.

[23]  T. Mima,et al.  Functional localization of pain perception in the human brain studied by PET , 1997, Neuroreport.

[24]  S. Minoshima,et al.  Cerebral processing of acute skin and muscle pain in humans. , 1997, Journal of neurophysiology.

[25]  Albert Gjedde,et al.  Cerebral blood‐flow changes evoked by two levels of painful heat stimulation: A positron emission tomography study in humans , 1998, European journal of pain.

[26]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[27]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[28]  P. Roland,et al.  Shape and roughness activate different somatosensory areas in the human brain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Fred A Lenz,et al.  Pain sensitivity alterations as a function of lesion location in the parasylvian cortex , 1999, Pain.

[30]  K. Zilles,et al.  Illusory Arm Movements Activate Cortical Motor Areas: A Positron Emission Tomography Study , 1999, The Journal of Neuroscience.

[31]  T. Mima,et al.  Brain structures related to active and passive finger movements in man. , 1999, Brain : a journal of neurology.

[32]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[33]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[34]  H. Breiter,et al.  Human brain activation under controlled thermal stimulation and habituation to noxious heat: An fMRI study , 1999, Magnetic resonance in medicine.

[35]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[36]  H Burton,et al.  Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. , 1999, Cerebral cortex.

[37]  B. Mazoyer,et al.  FMRI and PET of Self-Paced Finger Movement: Comparison of Intersubject Stereotaxic Averaged Data , 1999, NeuroImage.

[38]  N. Costes,et al.  Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. , 1999, Brain : a journal of neurology.

[39]  J. Maisog,et al.  Pain intensity processing within the human brain: a bilateral, distributed mechanism. , 1999, Journal of neurophysiology.

[40]  B. Krauss,et al.  A Comparative fMRI Study of Cortical Representations for Thermal Painful, Vibrotactile, and Motor Performance Tasks , 1999, NeuroImage.

[41]  C J Hodge,et al.  Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger. , 2000, Journal of neurosurgery.

[42]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[43]  David Borsook,et al.  Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study , 2000, Neuroscience Letters.

[44]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[45]  A. Schnitzler,et al.  Functional Neuroimaging of Visceral Sensation , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[46]  W. Backes,et al.  Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention , 2000, Clinical Neurophysiology.

[47]  W.J.R. Dunseath,et al.  fMRI of the Responses to Vibratory Stimulation of Digit Tips , 2000, NeuroImage.

[48]  M. Honda,et al.  Expectation of Pain Enhances Responses to Nonpainful Somatosensory Stimulation in the Anterior Cingulate Cortex and Parietal Operculum/Posterior Insula: an Event-Related Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[49]  P M Rossini,et al.  Topographic organization of the human primary and secondary somatosensory areas: an fMRI study , 2000, Neuroreport.

[50]  L. Krubitzer,et al.  Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV , 2000, The Journal of comparative neurology.

[51]  S. Stone-Elander,et al.  Pain-related cerebral activation is altered by a distracting cognitive task , 2000, Pain.

[52]  P E Roland,et al.  Somatosensory areas in man activated by moving stimuli: cytoarchitectonic mapping and PET , 2000, Neuroreport.

[53]  Cortical responses to single mechanoreceptive afferent microstimulation revealed with fMRI , 2000, NeuroImage.

[54]  M. Bushnell,et al.  Cortical representation of the sensory dimension of pain. , 2001, Journal of neurophysiology.

[55]  A Villringer,et al.  Somatotopic organization of human secondary somatosensory cortex. , 2001, Cerebral cortex.

[56]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[57]  R. Coghill,et al.  Hemispheric lateralization of somatosensory processing. , 2001, Journal of neurophysiology.

[58]  N. Birbaumer,et al.  Cerebral Activation during Anal and Rectal Stimulation , 2001, NeuroImage.

[59]  P Servos,et al.  fMRI-derived cortical maps for haptic shape, texture, and hardness. , 2001, Brain research. Cognitive brain research.

[60]  L. Krubitzer,et al.  Evidence for interhemispheric processing of inputs from the hands in human S2 and PV. , 2001, Journal of neurophysiology.

[61]  Keith R Thulborn,et al.  Early Decay of Pain-related Cerebral Activation in Functional Magnetic Resonance Imaging: Comparison with Visual and Motor Tasks , 2002, Anesthesiology.

[62]  Paolo Maria Rossini,et al.  Topographic Organization of the Human Primary and Secondary Somatosensory Cortices: Comparison of fMRI and MEG Findings , 2002, NeuroImage.

[63]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[64]  John J. Foxe,et al.  Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. , 2002, Journal of neurophysiology.

[65]  Andrew C. N. Chen,et al.  Event-Related Functional MRI Study on Central Representation of Acute Muscle Pain Induced by Electrical Stimulation , 2002, NeuroImage.

[66]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[67]  Gabriel Curio,et al.  Event-related fMRI of the somatosensory system using electrical finger stimulation , 2002, Neuroreport.

[68]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[69]  Herta Flor,et al.  Simultaneous electroencephalography and functional magnetic resonance imaging of primary and secondary somatosensory cortex in humans after electrical stimulation , 2002, Neuroscience Letters.

[70]  Krish D. Singh,et al.  fMRI of Thermal Pain: Effects of Stimulus Laterality and Attention , 2002, NeuroImage.

[71]  R. Passingham,et al.  Multiple Movement Representations in the Human Brain: An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[72]  C Büchel,et al.  Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. , 2002, Brain : a journal of neurology.

[73]  Jon H Kaas,et al.  The organization of somatosensory cortex in anthropoid primates. , 2003, Advances in neurology.

[74]  M. Bushnell,et al.  Differentiation of visceral and cutaneous pain in the human brain. , 2003, Journal of neurophysiology.

[75]  Christian Büchel,et al.  Single trial fMRI reveals significant contralateral bias in responses to laser pain within thalamus and somatosensory cortices , 2003, NeuroImage.

[76]  Rüdiger J. Seitz,et al.  A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study , 2003, NeuroImage.

[77]  K. Zilles,et al.  Somatosensory areas engaged during discrimination of steady pressure, spring strength, and kinesthesia , 2003, Human brain mapping.

[78]  E T Rolls,et al.  Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. , 2003, Cerebral cortex.

[79]  H. Dinse,et al.  Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex , 2003, Neuron.

[80]  J. Sanes,et al.  Experience-Dependent Activation Patterns in Human Brain during Visual-Motor Associative Learning , 2003, The Journal of Neuroscience.

[81]  W. McIlroy,et al.  Tactile stimulus predictability modulates activity in a tactile-motor cortical network , 2003, Experimental Brain Research.

[82]  Claudio Babiloni,et al.  Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study , 2003, NeuroImage.

[83]  Alan C. Evans,et al.  Probabilistic cytoarchitectonic maps transformed into MNI space , 2003 .

[84]  齋藤 大輔,et al.  Tactile-visual cross-modal shape matching : A functional MRI study , 2003 .

[85]  G. Curio,et al.  Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization , 2003, NeuroImage.

[86]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[87]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[88]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.