Fast and Simple Nested Fixpoints

Abstract We give an alternative proof of the result of Long et al. (1994) that nested fixpoint expressions e of alternation depth d > 1 can be evaluated over a complete lattice of height h in time O (d · ( h · ¦e¦ (d − 1 )) ⌜ d 2 ⌝+1 ) . The advantage of our proof is that it is both extremely short and extremely simple.

[1]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[2]  Helmut Seidl,et al.  An Even Faster Solver for General Systems of Equations , 1996, SAS.

[3]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[4]  Rance Cleaveland,et al.  Faster Model Checking for the Modal Mu-Calculus , 1992, CAV.

[5]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[6]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[7]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[8]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Branching-Time Model Checking (Extended Abstract) , 1994, CAV.

[9]  Girish Bhat,et al.  Efficent Local Model-Checking for Fragments of teh Modal µ-Calculus , 1996, TACAS.

[10]  R. Cleaveland Eecient Local Model-checking for Fragments of the Modal -calculus , 1996 .

[11]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1994, Theor. Comput. Sci..

[12]  Henrik Reif Andersen,et al.  Model Checking and Boolean Graphs , 1992, Theor. Comput. Sci..

[13]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[14]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[15]  Paul Crubillé,et al.  A Linear Algorithm to Solve Fixed-Point Equations on Transition Systems , 1988, Inf. Process. Lett..

[16]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.