Noncommutative Polynomial Optimization

In this chapter we present the sums of Hermitian squares approach to noncommutative polynomial optimization problems. This is an extension of the sums of squares approach for polynomial optimization arising from real algebraic geometry. We provide a gentle introduction to the underlying theory of this methodology and highlight its importance.

[1]  Robert E. Skelton,et al.  Solving matrix inequalities whose unknowns are matrices , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[2]  T. V'ertesi,et al.  Quantum bounds on Bell inequalities , 2008, 0810.1615.

[3]  Igor Klep,et al.  A Nichtnegativstellensatz for polynomials in noncommuting variables , 2007 .

[4]  J. Helton “Positive” noncommutative polynomials are sums of squares , 2002 .

[5]  Igor Klep,et al.  NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..

[6]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[7]  Igor Klep,et al.  The truncated tracial moment problem , 2010, 1001.3679.

[8]  Rekha R. Thomas,et al.  Worst-case results for positive semidefinite rank , 2013, Mathematical Programming.

[9]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[10]  Igor Klep,et al.  Optimization Over Trace Polynomials , 2020, Annales Henri Poincaré.

[11]  Rekha R. Thomas,et al.  Positive semidefinite rank , 2014, Math. Program..

[12]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[13]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[14]  Scott McCullough Factorization of operator-valued polynomials in several non-commuting variables☆ , 2001 .

[15]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Monique Laurent,et al.  Matrices With High Completely Positive Semidefinite Rank , 2016, 1605.00988.

[17]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[20]  Monique Laurent,et al.  Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization , 2017, Found. Comput. Math..

[21]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[22]  J. Helton,et al.  Convexity and Semidefinite Programming in Dimension-Free Matrix Unknowns , 2012 .

[23]  Jie Wang,et al.  TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization , 2021, ArXiv.

[24]  Adrien Feix,et al.  Characterizing finite-dimensional quantum behavior , 2015, 1507.07521.

[25]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[26]  A. Guionnet,et al.  Free monotone transport , 2012, 1204.2182.

[27]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[28]  Igor Klep,et al.  Optimization of Polynomials in Non-Commuting Variables , 2016 .

[29]  J. Pascoe,et al.  Positive univariate trace polynomials , 2020, 2009.10081.

[30]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[31]  Victor Magron,et al.  The Constant Trace Property in Noncommutative Optimization , 2021, ISSAC.

[32]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[33]  Igor Klep,et al.  Semidefinite programming and sums of hermitian squares of noncommutative polynomials , 2010 .

[34]  J. William Helton,et al.  Convex Matrix Inequalities Versus Linear Matrix Inequalities , 2009, IEEE Transactions on Automatic Control.

[35]  Igor Klep,et al.  Sparse noncommutative polynomial optimization , 2019 .

[36]  Mario Berta,et al.  Quantum Bilinear Optimization , 2015, SIAM J. Optim..

[37]  Mihai Putinar,et al.  Noncommutative sums of squares , 2005 .

[38]  M. Marshall Positive polynomials and sums of squares , 2008 .

[39]  Jie Wang,et al.  Exploiting term sparsity in noncommutative polynomial optimization , 2020, Computational Optimization and Applications.

[40]  Rekha R. Thomas SPECTRAHEDRAL LIFTS OF CONVEX SETS , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[41]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[42]  Igor Klep,et al.  Algorithmic aspects of sums of Hermitian squares of noncommutative polynomials , 2013, Comput. Optim. Appl..

[43]  D. Mazziotti Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix , 2002 .

[44]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[45]  Monique Laurent,et al.  Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization , 2017, Math. Program..

[46]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[47]  J. Helton,et al.  FREE CONVEX ALGEBRAIC GEOMETRY , 2013, 1304.4272.

[48]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[49]  J. William Helton,et al.  Engineering Systems and Free Semi-Algebraic Geometry , 2009 .

[50]  Rekha R. Thomas,et al.  Polytopes of Minimum Positive Semidefinite Rank , 2012, Discret. Comput. Geom..

[51]  Igor Klep,et al.  Dimension-free entanglement detection in multipartite Werner states , 2021 .

[52]  Cyril Branciard,et al.  Covariance Bell inequalities , 2017, 1710.02445.