Partitioned Hierarchical alternating least squares algorithm for CP tensor decomposition
暂无分享,去创建一个
[1] Martin Haardt,et al. Extension of the semi-algebraic framework for approximate CP decompositions via non-symmetric simultaneous matrix diagonalization , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[2] André Uschmajew,et al. Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..
[3] Andrzej Cichocki,et al. Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition , 2016, IEEE Signal Processing Letters.
[4] P. Comon,et al. Tensor decompositions, alternating least squares and other tales , 2009 .
[5] Lieven De Lathauwer,et al. Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.
[6] P. Comon. Tensor Diagonalization, A useful Tool in Signal Processing , 1994 .
[7] P. Paatero. A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .
[8] Lieven De Lathauwer,et al. A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..
[9] Andrzej Cichocki,et al. A further improvement of a fast damped Gauss-Newton algorithm for candecomp-parafac tensor decomposition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[10] Andrzej Cichocki,et al. Tensor diagonalization - a new tool for PARAFAC and block-term decomposition , 2014, ArXiv.
[11] Andrzej Cichocki,et al. Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[12] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[13] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[14] Pierre Comon,et al. Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..
[15] B. Kowalski,et al. Tensorial resolution: A direct trilinear decomposition , 1990 .
[16] Andrzej Cichocki,et al. Numerical CP decomposition of some difficult tensors , 2016, J. Comput. Appl. Math..
[17] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis , 2015, IEEE Transactions on Signal Processing.
[18] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[19] Andrzej Cichocki,et al. Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..
[20] Florian Roemer,et al. A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI) , 2013, Signal Process..