Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest

[1]  Richard F. Betzel,et al.  Individualized event structure drives individual differences in whole-brain functional connectivity , 2021, NeuroImage.

[2]  S. Ganguli,et al.  Coupling of activity, metabolism and behaviour across the Drosophila brain , 2021, Nature.

[3]  G. Deco,et al.  Anatomical and Functional Gradients Shape Dynamic Functional Connectivity in the Human Brain , 2021, bioRxiv.

[4]  Jonathan D. Power,et al.  Rapid Precision Functional Mapping of Individuals Using Multi-Echo fMRI , 2020, Cell reports.

[5]  Olaf Sporns,et al.  High-amplitude cofluctuations in cortical activity drive functional connectivity , 2020, Proceedings of the National Academy of Sciences.

[6]  Farnaz Zamani Esfahlani,et al.  Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture , 2020, Nature Neuroscience.

[7]  Luke J. Chang,et al.  Movie viewing elicits rich and reliable brain state dynamics , 2020, Nature Communications.

[8]  Xenophon Papademetris,et al.  Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI , 2020, Nature Methods.

[9]  Jessica A. Turner,et al.  Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia , 2020, NeuroImage.

[10]  Timothy O. Laumann,et al.  Towards Reproducible Brain-Wide Association Studies , 2020, bioRxiv.

[11]  V. Calhoun,et al.  Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises , 2020, Biological Psychiatry.

[12]  Vince D. Calhoun,et al.  Questions and controversies in the study of time-varying functional connectivity in resting fMRI , 2020, Network Neuroscience.

[13]  L. Uddin,et al.  Pushing the Boundaries of Psychiatric Neuroimaging to Ground Diagnosis in Biology , 2019, eNeuro.

[14]  Olaf Sporns,et al.  Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture , 2019, Nature Neuroscience.

[15]  Abraham Z. Snyder,et al.  On time delay estimation and sampling error in resting-state fMRI , 2019, NeuroImage.

[16]  T. Ge,et al.  Resting brain dynamics at different timescales capture distinct aspects of human behavior , 2019, Nature Communications.

[17]  Oluwasanmi Koyejo,et al.  Human cognition involves the dynamic integration of neural activity and neuromodulatory systems , 2019, Nature Neuroscience.

[18]  Olaf Sporns,et al.  Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis , 2019, Network Neuroscience.

[19]  Dimitri Van De Ville,et al.  Dynamic mode decomposition of resting-state and task fMRI , 2018, NeuroImage.

[20]  Leonardo L. Gollo,et al.  Metastable brain waves , 2018, Nature Communications.

[21]  Anders M. Dale,et al.  Correction of respiratory artifacts in MRI head motion estimates , 2018, bioRxiv.

[22]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[23]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[24]  O. Sporns,et al.  Towards a new approach to reveal dynamical organization of the brain using topological data analysis , 2018, Nature Communications.

[25]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[26]  Oliver Y. Chén,et al.  The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis , 2018, Nature Communications.

[27]  Anders M. Dale,et al.  The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites , 2018, Developmental Cognitive Neuroscience.

[28]  Angkoon Phinyomark,et al.  Resting-State fMRI Functional Connectivity: Big Data Preprocessing Pipelines and Topological Data Analysis , 2017, IEEE Transactions on Big Data.

[29]  Stephen M. Smith,et al.  Brain network dynamics are hierarchically organized in time , 2017, Proceedings of the National Academy of Sciences.

[30]  Dimitri Van De Ville,et al.  The dynamic functional connectome: State-of-the-art and perspectives , 2017, NeuroImage.

[31]  Dongdong Lin,et al.  Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis , 2017, NeuroImage.

[32]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[33]  B. T. Thomas Yeo,et al.  Interpreting temporal fluctuations in resting-state functional connectivity MRI , 2017, NeuroImage.

[34]  M. Breakspear Dynamic models of large-scale brain activity , 2017, Nature Neuroscience.

[35]  Mariel G Kozberg,et al.  Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons , 2016, Proceedings of the National Academy of Sciences.

[36]  Danielle S Bassett,et al.  Brain network analysis: a practical tutorial. , 2016, Brain : a journal of neurology.

[37]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[38]  Paul Antoine Salin,et al.  Highly Dynamic Spatiotemporal Organization of Low‐Frequency Activities During Behavioral States in the Mouse Cerebral Cortex , 2016, Cerebral cortex.

[39]  Alexander J. E. Kell,et al.  Measuring and Modeling Nonlinear Interactions Between Brain Regions with fMRI , 2016, bioRxiv.

[40]  Satrajit S. Ghosh,et al.  The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions , 2016, bioRxiv.

[41]  Evan M. Gordon,et al.  On the Stability of BOLD fMRI Correlations , 2016, Cerebral cortex.

[42]  Eric Halgren,et al.  Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night , 2016, eLife.

[43]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[44]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[45]  Laurent Thoraval,et al.  Identifying Dynamic Functional Connectivity Changes in Dementia with Lewy Bodies Based on Product Hidden Markov Models , 2016, Front. Comput. Neurosci..

[46]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[47]  G. Deco,et al.  Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder , 2016, Human brain mapping.

[48]  Edward T. Bullmore,et al.  Fundamentals of Brain Network Analysis , 2016 .

[49]  M. Frank,et al.  Computational psychiatry as a bridge from neuroscience to clinical applications , 2016, Nature Neuroscience.

[50]  Russell A. Poldrack,et al.  Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives , 2015, NeuroImage.

[51]  Krzysztof J. Gorgolewski,et al.  The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance , 2015, Neuron.

[52]  Ann S. Choe,et al.  Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years , 2015, PloS one.

[53]  Jingyuan E. Chen,et al.  Functional Magnetic Resonance Imaging Methods , 2015, Neuropsychology Review.

[54]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[55]  Gustavo Deco,et al.  Functional connectivity dynamics: Modeling the switching behavior of the resting state , 2015, NeuroImage.

[56]  M. Sigman,et al.  Signature of consciousness in the dynamics of resting-state brain activity , 2015, Proceedings of the National Academy of Sciences.

[57]  Shella D. Keilholz,et al.  The Neural Basis of Time-Varying Resting-State Functional Connectivity , 2014, Brain Connect..

[58]  V. Calhoun,et al.  Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects , 2014, Front. Hum. Neurosci..

[59]  Martin A. Lindquist,et al.  Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach , 2014, NeuroImage.

[60]  V. Calhoun,et al.  The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery , 2014, Neuron.

[61]  A. Belger,et al.  Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia , 2014, NeuroImage: Clinical.

[62]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[63]  Stephen M Smith,et al.  Fast transient networks in spontaneous human brain activity , 2014, eLife.

[64]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[65]  Catie Chang,et al.  Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns , 2013, Front. Syst. Neurosci..

[66]  Thomas E. Nichols,et al.  Functional connectomics from resting-state fMRI , 2013, Trends in Cognitive Sciences.

[67]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[68]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[69]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[70]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[71]  Abraham Z. Snyder,et al.  Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp , 2013, NeuroImage.

[72]  Olaf Sporns,et al.  Network maps of the human brain's rich club , 2013, Network Science.

[73]  C. C. Gaudes,et al.  Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity , 2013, Human brain mapping.

[74]  J. Duyn,et al.  Time-varying functional network information extracted from brief instances of spontaneous brain activity , 2013, Proceedings of the National Academy of Sciences.

[75]  P. Y. Lum,et al.  Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.

[76]  Enzo Tagliazucchi,et al.  Dynamic BOLD functional connectivity in humans and its electrophysiological correlates , 2012, Front. Hum. Neurosci..

[77]  Michael Breakspear,et al.  A Canonical Model of Multistability and Scale-Invariance in Biological Systems , 2012, PLoS Comput. Biol..

[78]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.

[80]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[81]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[82]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[83]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[84]  D. Yurgelun-Todd,et al.  Reproducibility of Single-Subject Functional Connectivity Measurements , 2011, American Journal of Neuroradiology.

[85]  Waqas Majeed,et al.  Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans , 2011, NeuroImage.

[86]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[87]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[88]  J. O’Neill,et al.  Play it again: reactivation of waking experience and memory , 2010, Trends in Neurosciences.

[89]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[90]  Dario L Ringach,et al.  Spontaneous and driven cortical activity: implications for computation , 2009, Current Opinion in Neurobiology.

[91]  M. Breakspear,et al.  Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity , 2009, The Journal of Neuroscience.

[92]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[93]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[94]  P. Matthews,et al.  Distinct patterns of brain activity in young carriers of the APOE e4 allele , 2009, NeuroImage.

[95]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[96]  Feng Qi Han,et al.  Reverberation of Recent Visual Experience in Spontaneous Cortical Waves , 2008, Neuron.

[97]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[98]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[99]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[100]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[101]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[102]  E. Seidemann,et al.  Optimal decoding of correlated neural population responses in the primate visual cortex , 2006, Nature Neuroscience.

[103]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[104]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[105]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[106]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[107]  Todd B. Parrish,et al.  Impact of signal‐to‐noise on functional MRI , 2000 .

[108]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[109]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[110]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[111]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[112]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[113]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[114]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[115]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[116]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[117]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[118]  N. Tatarenko [Pathophysiology of schizophrenia]. , 1954, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova.