Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview

[1]  Il-Doo Kim,et al.  Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping , 2013, Nanotechnology.

[2]  P. Dutta,et al.  Nitric oxide sensors using combination of p- and n-type semiconducting oxides and its application for detecting NO in human breath , 2013 .

[3]  Yong Peng,et al.  Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. , 2013, ACS applied materials & interfaces.

[4]  Kyung Jin Choi,et al.  Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays. , 2013, ACS applied materials & interfaces.

[5]  Ho Won Jang,et al.  Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. , 2013, Nanoscale.

[6]  N. Bârsan,et al.  Ambivalent effect of Ni loading on gas sensing performance in SnO2 based gas sensor , 2013 .

[7]  Noriya Izu,et al.  Thermoelectric gas sensor with CO combustion catalyst for ppm level carbon monoxide detection , 2013 .

[8]  Il-Doo Kim,et al.  Thin‐Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled‐Breath‐Sensing Properties for the Diagnosis of Diabetes , 2013 .

[9]  Sanjay Mathur,et al.  Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection , 2013 .

[10]  Elson Longo,et al.  The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO‐Based Chemiresistors , 2013 .

[11]  Eduard Llobet,et al.  Single‐Step Deposition of Au‐ and Pt‐Nanoparticle‐Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosol‐Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays , 2013 .

[12]  Seong‐Hyeon Hong,et al.  H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route , 2013 .

[13]  K. Vijayalakshmi,et al.  Effect of pyrolytic temperature on the properties of nano-structured Cuo optimized for ethanol sensing applications , 2013, Journal of Materials Science: Materials in Electronics.

[14]  Hongwei Song,et al.  ZnO–SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties , 2013 .

[15]  Il-Doo Kim,et al.  Advances and new directions in gas-sensing devices , 2013 .

[16]  N. Perez,et al.  Properties of NiO sputtered thin films and modeling of their sensing mechanism under formaldehyde atmospheres , 2013 .

[17]  Guangsheng Guo,et al.  Synthesis, characterization and alcohol-sensing properties of rare earth doped In2O3 hollow spheres , 2013 .

[18]  Zongbin Zhao,et al.  Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes , 2013 .

[19]  Jong‐Heun Lee,et al.  Transformation of ZnO nanobelts into single-crystalline Mn3O4 nanowires. , 2012, ACS applied materials & interfaces.

[20]  Xuewen Wang,et al.  A Facile Synthesis Method for Ni(OH)2 Ultrathin Nanosheets and Their Conversion to Porous NiO Nanosheets Used for Formaldehyde Sensing , 2012 .

[21]  H Zhao,et al.  Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres , 2012 .

[22]  Nguyen Duc Hoa,et al.  Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance , 2012 .

[23]  Min Fu,et al.  Preparation of hollow Co3O4 microspheres and their ethanol sensing properties. , 2012, Inorganic chemistry.

[24]  H. Dai,et al.  Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion , 2012 .

[25]  Sang Min Lee,et al.  Enhanced ethanol sensing properties of TiO2 nanotube sensors , 2012 .

[26]  Peng Sun,et al.  Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor , 2012 .

[27]  Jinhuai Liu,et al.  Effective VOCs gas sensor based on porous SnO2 microcubes prepared via spontaneous phase segregation , 2012 .

[28]  G. Lu,et al.  Facile synthesis and gas-sensing properties of monodisperse α-Fe2O3 discoid crystals , 2012 .

[29]  Shurong Wang,et al.  CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. , 2012, Materials science & engineering. C, Materials for biological applications.

[30]  Wenlong Song,et al.  Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment , 2012 .

[31]  Hyunsu Kim,et al.  Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation , 2012 .

[32]  P. Wu,et al.  Solution plasma synthesized nickel oxide nanoflowers: An effective NO2 sensor , 2012 .

[33]  Zhaoqi Sun,et al.  Synthesis and characterization of (CuO)x(ZnO)1 − x composite thin films with tunable optical and electrical properties , 2012 .

[34]  Yafei Zhang,et al.  Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature , 2012 .

[35]  Xiaoping Shen,et al.  Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties , 2012 .

[36]  Ho Won Jang,et al.  Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors , 2012, Scientific Reports.

[37]  K. Kim,et al.  Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres , 2012 .

[38]  Lili Wang,et al.  Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor , 2012 .

[39]  H. Fan,et al.  Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties , 2012 .

[40]  Yujin Chen,et al.  Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO p–n junction nanocomposite , 2012 .

[41]  A. Gardchareon,et al.  Control of depletion layer width via amount of AuNPs for sensor response enhancement in ZnO nanostructure sensor , 2012 .

[42]  Hailong Yu,et al.  Synthesis and H2S gas sensing properties of cage-like α-MoO3/ZnO composite , 2012 .

[43]  Jinhuai Liu,et al.  Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties , 2012 .

[44]  Shun Mao,et al.  Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p-n junctions on their surfaces. , 2012, ACS applied materials & interfaces.

[45]  Claire J. Carmalt,et al.  Tantalum and Titanium doped In2O3 Thin Films by Aerosol-Assisted Chemical Vapor Deposition and their Gas Sensing Properties , 2012 .

[46]  Kijung Yong,et al.  CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing , 2012 .

[47]  S. S. Kim,et al.  H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers , 2012 .

[48]  Murthy Chavali,et al.  Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor , 2012 .

[49]  Chan Woong Na,et al.  Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures , 2012, Nanotechnology.

[50]  Peng Song,et al.  Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates , 2012 .

[51]  Chan Woong Na,et al.  One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection , 2012 .

[52]  Jong-Heun Lee,et al.  Selective Detection of NO2 Using Cr-Doped CuO Nanorods , 2012, Sensors.

[53]  F. Zhang,et al.  Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors , 2012 .

[54]  S. S. Kim,et al.  Novel growth of CuO-functionalized, branched SnO2 nanowires and their application to H2S sensors , 2012 .

[55]  Xiaoping Shen,et al.  Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor , 2012 .

[56]  Yangong Zheng,et al.  Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process , 2012 .

[57]  Vinay Gupta,et al.  A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas , 2012 .

[58]  D. K. Aswal,et al.  Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers , 2012 .

[59]  Yafei Zhang,et al.  Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity , 2012 .

[60]  Jian Jia,et al.  Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties , 2012 .

[61]  A. Martucci,et al.  Enhanced optical and electrical gas sensing response of sol-gel based NiO-Au and ZnO-Au nanostructured thin films , 2012 .

[62]  Teng Fei,et al.  Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance , 2012 .

[63]  Xinyong Li,et al.  Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. , 2012, Journal of hazardous materials.

[64]  Z. Chang,et al.  Sea urchin-like Ag–α-Fe2O3 nanocomposite microspheres: synthesis and gas sensing applications , 2012 .

[65]  Yu Lei,et al.  Highly sensitive H2S sensor based on template-synthesized CuO nanowires , 2012 .

[66]  G. Lu,et al.  Preparation of NiO nanoparticles in microemulsion and its gas sensing performance , 2012 .

[67]  Xiaofei Yang,et al.  Flexible morphology-controlled synthesis of monodisperse α-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties , 2012 .

[68]  Guoxiu Wang,et al.  Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. , 2012, Chemical communications.

[69]  Chan Woong Na,et al.  Design of highly sensitive volatile organic compound sensors by controlling NiO loading on ZnO nanowire networks , 2012 .

[70]  Changhyun Jin,et al.  H2S gas sensing properties of bare and Pd-functionalized CuO nanorods , 2012 .

[71]  Teng Fei,et al.  Enhanced acetone sensing performances of hierarchical hollow Au-loaded NiO hybrid structures , 2012 .

[72]  J. H. Lee,et al.  Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers , 2012 .

[73]  Li Liu,et al.  High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C , 2011 .

[74]  Elisabetta Comini,et al.  Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing , 2011 .

[75]  Y. Mortazavi,et al.  Nanostructured SnO2-ZnO sensors: Highly sensitive and selective to ethanol , 2011 .

[76]  Nicolae Barsan,et al.  The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2‐Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies , 2011 .

[77]  J. Goodenough,et al.  Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. , 2011, Chemical communications.

[78]  G. Zou,et al.  Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages , 2011 .

[79]  Chao Yang,et al.  Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method , 2011 .

[80]  N. Bârsan,et al.  Enhancing performance of FSP SnO2-based gas sensors through Sb-doping and Pd-functionalization , 2011 .

[81]  Chao Sun,et al.  Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties , 2011 .

[82]  S. Mathur,et al.  Synthesis, Characterization, and Gas Sensing Properties of Porous Nickel Oxide Nanotubes , 2011 .

[83]  Il-Doo Kim,et al.  Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. , 2011, Chemical communications.

[84]  S. Syed-Hassan,et al.  Catalytic oxidation of ethane with oxygen using fluidised nanoparticle NiO catalyst , 2011 .

[85]  Li Liu,et al.  Synthesis, Characterization, and m-Xylene Sensing Properties of Co-ZnO Composite Nanofibers , 2011 .

[86]  B. Liu,et al.  Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals , 2011 .

[87]  Yi-Feng Lin,et al.  Nanowires improved charge separation and light utilization in metal-oxide solar cells , 2011 .

[88]  J. Park,et al.  Growth behavior and sensing properties of nanograins in CuO nanofibers , 2011 .

[89]  Xiaoping Shen,et al.  Preparation and gas-sensing performance of In2O3 porous nanoplatelets , 2011 .

[90]  N. G. Cho,et al.  Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method , 2011 .

[91]  Tetsuya Kida,et al.  Microstructure control of TiO2 nanotubular films for improved VOC sensing , 2011 .

[92]  Udo Weimar,et al.  Influence of humidity on CO sensing with p-type CuO thick film gas sensors , 2011 .

[93]  Guozhong Cao,et al.  Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries , 2011 .

[94]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[95]  Jong‐Heun Lee,et al.  Gas Sensors Using Oxide Nanowire Networks: An Overview , 2011 .

[96]  J. H. Lee,et al.  Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl–NiO composite nanofibers , 2011 .

[97]  R. Wu,et al.  Conductometric chemical sensor based on individual CuO nanowires , 2010, Nanotechnology.

[98]  Seong‐Hyeon Hong,et al.  CuO-loaded nano-porous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties , 2010 .

[99]  Dinesh K. Aswal,et al.  Sub-ppm H2S sensing at room temperature using CuO thin films , 2010 .

[100]  C. Xie,et al.  Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method , 2010 .

[101]  Feng Zhang,et al.  CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability , 2010 .

[102]  Xinghua Li,et al.  Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. , 2010, ACS applied materials & interfaces.

[103]  O. Singh,et al.  Ethanol and LPG sensing characteristics of SnO2 activated Cr2O3 thick film sensor , 2010 .

[104]  N. Bârsan,et al.  Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors , 2010 .

[105]  K. Kim,et al.  Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. , 2010, Chemical communications.

[106]  Seong‐Hyeon Hong,et al.  SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance , 2010, Nanotechnology.

[107]  Ning Han,et al.  Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO , 2010 .

[108]  Vijayanand Subramanian,et al.  Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. , 2010, Talanta.

[109]  Sotiris E Pratsinis,et al.  Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. , 2010, Analytical chemistry.

[110]  J. H. Lee,et al.  C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction , 2010 .

[111]  Lei Li,et al.  Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method , 2010 .

[112]  Tetsuya Kida,et al.  Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds , 2010 .

[113]  K. Sreenivas,et al.  Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas , 2010 .

[114]  Benjamin J. Hansen,et al.  Transport, Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires , 2010 .

[115]  Qingshan Zhu,et al.  CuO-CeO2 binary oxide nanoplates: Synthesis, characterization, and catalytic performance for benzene oxidation , 2009 .

[116]  Byeong Kwon Ju,et al.  Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO , 2009 .

[117]  A. Khodadadi,et al.  Highly sensitive CO and ethanol nanoflower-like SnO2 sensor among various morphologies obtained by using single and mixed ionic surfactant templates , 2009 .

[118]  S. Pratsinis,et al.  Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions , 2009, Nanotechnology.

[119]  Xingzhong Zhao,et al.  Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes , 2009 .

[120]  Yong Jia,et al.  Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing , 2009, Journal of Materials Science.

[121]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[122]  Tong Zhang,et al.  Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures , 2009 .

[123]  K. Choi,et al.  Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres , 2009 .

[124]  Xuejun Zheng,et al.  Synthesis and toluene sensing properties of SnO2 nanofibers , 2009 .

[125]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[126]  S. Akbar,et al.  Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres , 2009 .

[127]  J. Zhan,et al.  Fabrication and Gas‐Sensing Properties of Porous ZnO Nanoplates , 2008 .

[128]  L. A. Patil,et al.  Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors , 2008 .

[129]  Xinyu Xue,et al.  Synthesis and H2S Sensing Properties of CuO-SnO2Core/Shell PN-Junction Nanorods , 2008 .

[130]  A. Raychaudhuri,et al.  Shape transition in ZnO nanostructures and its effect on blue-green photoluminescence , 2008, Nanotechnology.

[131]  Jianliang Cao,et al.  Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation , 2008 .

[132]  David Wexler,et al.  Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons , 2008 .

[133]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[134]  Irina I. Ivanova,et al.  Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives , 2007 .

[135]  Seok-Jin Yoon,et al.  The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition , 2007 .

[136]  A. Sinha,et al.  Novel mesoporous chromium oxide for VOCs elimination , 2007 .

[137]  L. A. Patil,et al.  Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature , 2006 .

[138]  N. Yamazoe,et al.  C2H4O sensing properties for thick film sensor using La2O3-modified SnO2 , 2006 .

[139]  Jinying Yuan,et al.  Fabrication and Sensing Behavior of Cr2O3 Nanofibers via In situ Gelation and Electrospinning , 2006 .

[140]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[141]  L. Wan,et al.  Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. , 2006, The journal of physical chemistry. B.

[142]  D. Basak,et al.  Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications , 2006 .

[143]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[144]  H. Ohta,et al.  Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO∕p-NiO junction using photoemission spectroscopy , 2006, cond-mat/0604549.

[145]  Duk-Dong Lee,et al.  H2S microgas sensor fabricated by thermal oxidation of Cu/Sn double layer , 2005 .

[146]  Fathollah Pourfayaz,et al.  CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4 , 2005 .

[147]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[148]  Udo Weimar,et al.  Water–oxygen interplay on tin dioxide surface: Implication on gas sensing , 2005 .

[149]  Steve Semancik,et al.  Porous tin oxide nanostructured microspheres for sensor applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[150]  Hao Shen,et al.  Size-dependent photoconductance in SnO2 nanowires. , 2005, Small.

[151]  D. Cann,et al.  Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors , 2005 .

[152]  Lei Xu,et al.  Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas Sensors , 2005 .

[153]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[154]  Yadong Li,et al.  High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature , 2005 .

[155]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[156]  G. Choi,et al.  Composition Dependence of the Electrical Conductivity of ZnO(n)–CuO(p) Ceramic Composite , 2005 .

[157]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[158]  Xiaoming Sun,et al.  Highly sensitive WO3 hollow-sphere gas sensors. , 2004, Inorganic chemistry.

[159]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[160]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[161]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[162]  L. A. Patil,et al.  Surface cupricated SnO2-ZnO thick films as a H2S gas sensor , 2004 .

[163]  Kengo Shimanoe,et al.  Sensing properties of SnO2–Co3O4 composites to CO and H2 , 2004 .

[164]  Rajeev Kumar,et al.  Response speed of SnO2-based H2S gas sensors with CuO nanoparticles , 2004 .

[165]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[166]  V. C. Sahni,et al.  Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation , 2003 .

[167]  R. Glass,et al.  Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor , 2003 .

[168]  Wojtek Wlodarski,et al.  p-and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique , 2003 .

[169]  A. Cornet,et al.  Mesoporous catalytic filters for semiconductor gas sensors , 2003 .

[170]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[171]  S. S. Bhatti,et al.  CuO-doped SnO2 thin films as hydrogen sulfide gas sensor , 2003 .

[172]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[173]  Jun Li,et al.  Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays , 2003 .

[174]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[175]  Makoto Egashira,et al.  Synthesis of mesoporous TiO2-based powders and their gas-sensing properties , 2002 .

[176]  R. van de Krol,et al.  Electroceramics—the role of interfaces , 2002 .

[177]  M. Sillanpää,et al.  Heterogeneous water phase catalysis as an environmental application: a review. , 2002, Chemosphere.

[178]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[179]  Parmanand Sharma,et al.  H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands , 2002 .

[180]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[181]  Alex Zunger,et al.  Origins of coexistence of conductivity and transparency in SnO(2). , 2002, Physical review letters.

[182]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[183]  Dieter Kohl,et al.  Function and applications of gas sensors , 2001 .

[184]  S. Oswald,et al.  XPS investigations of surface segregation of doping elements in SnO2 , 2001 .

[185]  Yulong Xu,et al.  Sensing behavior and mechanism of La2CuO4–SnO2 gas sensors , 2001 .

[186]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[187]  Marina N. Rumyantseva,et al.  CuO/SnO2 thin film heterostructures as chemical sensors to H2S , 1998 .

[188]  Norio Miura,et al.  Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method , 1998 .

[189]  N. Bârsan,et al.  Grain size control in nanocrystalline In2O3 semiconductor gas sensors , 1997 .

[190]  H. Yanagida,et al.  The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas , 1996 .

[191]  M. Bettahar,et al.  On the partial oxidation of propane and propylene on mixed metal oxide catalysts , 1996 .

[192]  S. Manorama,et al.  Gas Sensitivity of SnO2 / CuO Heterocontacts , 1995 .

[193]  Hiroaki Yanagida,et al.  Study of the conduction mechanism of La2CuO4—ZnO heterocontacts at different relative humidities , 1995 .

[194]  N. Yamazoe,et al.  Copper Oxide-Loaded Tin Dioxide Thin Film for Detection of Dilute Hydrogen Sulfide , 1995 .

[195]  M. Miyayama,et al.  New Approach to Selective Semiconductor Gas Sensors Using a de‐Biased pn Heterocontact , 1995 .

[196]  M. Miyayama,et al.  New Gas-Sensing Method for Detecting Carbon Monoxide by Use of the Complex Impedance of a CuO/ZnO Heterocontact under a dc Bias Voltage , 1994 .

[197]  M. Miyayama,et al.  Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction , 1994 .

[198]  Hiroaki Yanagida,et al.  Gas sensitivity of ZnO/La2CuO4 heterocontacts , 1994 .

[199]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[200]  M. Miyayama,et al.  Fabrication of thin-film CuO/ZnO heterojunction and its humidity-sensing properties , 1993 .

[201]  Norio Miura,et al.  CuO-SnO2 element for highly sensitive and selective detection of H2S , 1992 .

[202]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[203]  Norio Miura,et al.  Sensing behavior of CuO-loaded snO2 element for H2S detection , 1991 .

[204]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[205]  H. Yanagida,et al.  Selective CO Gas Sensing Mechanism with CuO / ZnO Heterocontact , 1990 .

[206]  N. Yamazoe,et al.  Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides , 1978 .

[207]  I. Kobal,et al.  13C and 14C kinetic isotope effects in the catalytic oxidation of CO over NiO catalyst , 1977 .

[208]  D. Adler,et al.  Band Structure and Electrical Conductivity of NiO , 1968 .

[209]  Y. Moro-oka,et al.  Regularities in catalytic properties of metal oxides in propylene oxidation , 1966 .

[210]  Jun Zhu,et al.  Nearly monodispersed In(OH)3 hierarchical nanospheres and nanocubes: tunable ligand-assisted synthesis and their conversion into hierarchical In2O3 for gas sensing , 2013 .

[211]  S. S. Kim,et al.  Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection , 2013 .

[212]  Jun Zhang,et al.  Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing , 2012 .

[213]  M. Stanacevic,et al.  Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath , 2010, IEEE Sensors Journal.

[214]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[215]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[216]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[217]  Yoshinobu Nakamura,et al.  Design of a gas sensitive transparent heterojunction—The system SrCu2O2–ZnO , 2005 .

[218]  A. Sinha,et al.  Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. , 2004, Angewandte Chemie.

[219]  H. Tuller,et al.  Atmosphere sensitive CuO/ZnO junctions , 1995 .

[220]  M. Miyayama,et al.  Chlorine Gas Sensing Using ZnO/SiC Hetero-Contact , 1987 .

[221]  H. Yanagida,et al.  Effects of water vapor on the electrical conductivity of the interface of semiconductor ceramic-ceramic contacts. , 1979 .