The propositional normal default logic and the finite/infinite injury priority method

In propositional normal default logic, given a default theory (Δ,D) and a well-defined ordering of D, there is a method to construct an extension of (Δ,D) without any injury. To construct a strong extension of (Δ,D) given a well-defined ordering of D, there may be finite injuries for a default δ ∈ D. With approximation deduction ⊢s in propositional logic, we will show that to construct an extension of (Δ,D) under a given welldefined ordering of D, there may be infinite injuries for some default δ ∈ D.

[1]  Frédéric Saubion,et al.  Heuristics for a Default Logic Reasoning System , 2001, Int. J. Artif. Intell. Tools.

[2]  Witold Łukaszewicz Considerations on default logic: an alternative approach 1 , 1988 .

[3]  Robert I. Soare,et al.  Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.

[4]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[5]  Li Wei,et al.  The R-Calculus and the Finite Injury Priority Method , 2017, J. Comput..

[6]  Grigoris Antoniou,et al.  A tutorial on default logics , 1999, CSUR.

[7]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[8]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[9]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[10]  Wei Li Mathematical logic - foundations for information science , 2010, Progress in computer science and applied logic.

[11]  Torsten Schaub,et al.  Alternative Approaches to Default Logic , 1994, Artif. Intell..

[12]  R. Friedberg,et al.  TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[14]  Wei Li,et al.  The sound and complete R-calculus for revising propositional theories , 2014, Science China Information Sciences.