Chaotic systems: counting the number of periods
暂无分享,去创建一个
[1] L. Glass,et al. Symbolic dynamics and skeletons of circle maps , 1989 .
[2] B. Hao,et al. Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .
[3] Cvitanovic,et al. Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.
[4] Zeng Wan-zhen,et al. On the Number of Stable Cycles in the Cubic Map , 1987 .
[5] Procaccia,et al. Organization of chaos. , 1987, Physical review letters.
[6] James A. Yorke,et al. Period doubling cascades of attractors: A prerequisite for horseshoes , 1985 .
[7] Zeng Wan-zhen,et al. A recursion formula for the number of stable orbits in the cubic map , 1985 .
[8] F. Angulo-Brown,et al. Symbolic dynamics of the cubic map , 1985 .
[9] E. Piña. Comment on "Study of a one-dimensional map with multiple basins" , 1984 .
[10] Hao Bai-lin,et al. Scaling Property of Period-n-Tupling Sequences in One-Dimensional Mappings , 1984 .
[11] P. Stefan. A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line , 1977 .
[12] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[13] Nicholas C. Metropolis,et al. On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.
[14] E. Gilbert,et al. Symmetry types of periodic sequences , 1961 .
[15] N. J. Fine,et al. Classes of periodic sequences , 1958 .