Heterogeneous distribution of water in the Moon

The discovery of water in lunar samples in 2008 challenged the notion that the Moon's interior had lost all its volatiles. Since then, analyses of the water concentrations and isotopic compositions in lunar samples taken together suggest that the Moon is heterogeneously wet, which may lend clues to its origin.

[1]  J. Maxwell,et al.  Chemical composition of Apollo 11 lunar samples 10017, 10020, 10072 and 10084 , 1970 .

[2]  R. Wiggins,et al.  Apollo 11 passive seismic experiment , 1970 .

[3]  E. Roth,et al.  ABSOLUTE ISOTOPIC SCALE FOR DEUTERIUM ANALYSIS OF NATURAL WATERS. ABSOLUTE D/H RATIO FOR SMOW. , 1970 .

[4]  E. Gibson,et al.  Thermal analysis-inorganic gas release studies of lunar samples , 1971 .

[5]  H. Mao,et al.  Rust in the Apollo 16 rocks , 1973 .

[6]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .

[7]  H. Mao,et al.  Identification of the Hydrated Iron Oxide Mineral Akaganéite in Apollo 16 Lunar Rocks , 1974 .

[8]  S. Epstein,et al.  D/H and O-18/O-16 ratios of H2O in the 'rusty' breccia 66095 and the origin of 'lunar water' , 1974 .

[9]  P. Horn,et al.  Chronology of the Taurus-Littrow region. III - Ages of mare basalts and highland breccias and some remarks about the interpretation of lunar highland rock ages , 1974 .

[10]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[11]  J. Geiss,et al.  The cosmic-ray exposure history of Shorty Crater samples; the age of Shorty Crater. , 1977 .

[12]  E. R. Cohen,et al.  Internal friction quality-factor Q under confining pressure. [of lunar rocks , 1977 .

[13]  E. Anders,et al.  Moon and Earth : compositional differences inferred from siderophiles, volatiles, and alkalis in basalts , 1980 .

[14]  R. Reedy Cosmic-ray-produced stable nuclides: various production rates and their implications , 1981 .

[15]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[16]  P. Michael The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism , 1988 .

[17]  T. Ahrens,et al.  Water storage in the mantle , 1989, Nature.

[18]  F. Albarède,et al.  Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks , 1991 .

[19]  A. Thompson Water in the Earth's upper mantle , 1992, Nature.

[20]  J. Longhi Experimental petrology and petrogenesis of mare volcanics , 1992 .

[21]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[22]  S. Epstein,et al.  Water on Mars: Clues from Deuterium/Hydrogen and Water Contents of Hydrous Phases in SNC Meteorites , 1994, Science.

[23]  John R. Holloway,et al.  Volatiles in magmas , 1994 .

[24]  A. Jambon Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS , 1994 .

[25]  C. Graham The nature and scale of stable isotope disequilibrium in the mantle: ion and laser microprobe evidence , 1994 .

[26]  E. Stolper,et al.  An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part I: Calibration and Solubility Models , 1995 .

[27]  C. Wagner,et al.  Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco: mineralogy and D/H isotopic studies , 1996 .

[28]  F. Robert,et al.  The hydrogen isotope composition of seawater and the global water cycle , 1998 .

[29]  Alwyn Wootten,et al.  Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆ , 1998 .

[30]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[31]  S. Newman,et al.  SIMS analysis of volatiles in silicate glasses , 2002 .

[32]  E. Deloule,et al.  Anomalously high δD values in the mantle , 2002 .

[33]  C. Langmuir,et al.  Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle , 2002, Nature.

[34]  E. Hauri SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions , 2002 .

[35]  N. Boctor,et al.  The sources of water in Martian meteorites: clues from hydrogen isotopes , 2003 .

[36]  M. Hirschmann,et al.  Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals , 2003 .

[37]  M. Hirschmann,et al.  Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts , 2004 .

[38]  R. Canup,et al.  Simulations of a late lunar-forming impact , 2004 .

[39]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[40]  J. Longhi Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation , 2006 .

[41]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[42]  G. Gaetani,et al.  Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions , 2006 .

[43]  M. Mottl,et al.  Water and astrobiology , 2007 .

[44]  S. Kohn,et al.  The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite-forsterite-H2O , 2007 .

[45]  R. Cooper,et al.  The Volatile Contents (CO2, H2O, F, S, Cl) of the Lunar Picritic Glasses , 2007 .

[46]  Reid F. Cooper,et al.  Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior , 2008, Nature.

[47]  E. Vicenzi,et al.  Hydrogen isotope evidence for loss of water from Mars through time , 2008 .

[48]  B. Jolliff,et al.  Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS , 2010 .

[49]  Z. Sharp,et al.  The Chlorine Isotope Composition of the Moon and Implications for an Anhydrous Mantle , 2010, Science.

[50]  W. Bottke,et al.  Stochastic Late Accretion to Earth, the Moon, and Mars , 2010, Science.

[51]  Yang Liu,et al.  Lunar apatite with terrestrial volatile abundances , 2010, Nature.

[52]  Andrew Steele,et al.  Nominally hydrous magmatism on the Moon , 2010, Proceedings of the National Academy of Sciences.

[53]  Hisayoshi Yurimoto,et al.  Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon , 2011 .

[54]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[55]  Youxue Zhang "Water" in Lunar Basalts: The Role of Molecular Hydrogen (H2), Especially in the Diffusion of the H Component , 2011 .

[56]  Jürgen Oberst,et al.  Non-mare silicic volcanism on the lunar farside at Compton-Belkovich , 2011 .

[57]  G. J. Taylor,et al.  A Model of the Moon's Volatile Depletion , 2011 .

[58]  B. Jolliff,et al.  Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior , 2011 .

[59]  L. Elkins‐Tanton,et al.  Water (hydrogen) in the lunar mantle: Results from petrology and magma ocean modeling , 2011 .

[60]  J. V. Van Orman,et al.  High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions , 2011, Science.

[61]  M. Hirschmann,et al.  Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets , 2012 .

[62]  M. Newville,et al.  Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions , 2012 .

[63]  G. J. Taylor,et al.  Magmatic water in the martian meteorite Nakhla , 2012 .

[64]  T. Grove,et al.  The Role of H 2 O in Subduction Zone Magmatism , 2012 .

[65]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[66]  C. Olinger,et al.  A New Upper Limit on the D/H Ratio in the Solar Wind , 2012 .

[67]  R. Paniello,et al.  Zinc isotopic evidence for the origin of the Moon , 2012, Nature.

[68]  Justin J. Hagerty,et al.  Remote detection of magmatic water in Bullialdus Crater on the Moon , 2013 .

[69]  Clive R. Neal,et al.  Water in lunar anorthosites and evidence for a wet early Moon , 2013 .

[70]  J. V. Van Orman,et al.  Hydrogen Isotopes in Lunar Volcanic Glasses and Melt Inclusions Reveal a Carbonaceous Chondrite Heritage , 2013, Science.

[71]  K. Nagashima,et al.  D/H of Intrusive Moon Rocks: Implications for Lunar Origin , 2013 .

[72]  M. Anand,et al.  Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts , 2013 .

[73]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[74]  F. McCubbin,et al.  A hydrogen-based oxidation mechanism relevant to planetary formation , 2013 .

[75]  P. Chauhan,et al.  Endogenic water on the Moon associated with non-mare silicic volcanism: implications for hydrated lunar interior , 2013 .

[76]  M. Koike,et al.  Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS , 2013 .

[77]  I. Franchi,et al.  The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon , 2013 .

[78]  J. P. Greenwood,et al.  The Lunar Apatite Paradox , 2014, Science.

[79]  L. Taylor,et al.  The Significance of OH Contents in Lunar Apatites , 2014 .

[80]  I. Franchi,et al.  Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon , 2014 .

[81]  I. Franchi,et al.  The origin of water in the primitive Moon as revealed by the lunar highlands samples , 2014 .

[82]  P. Warren 2.9 – The Moon , 2014 .

[83]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[84]  B. Marty,et al.  New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses , 2014 .