Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

[1]  A. Soler,et al.  Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values , 2013 .

[2]  T. Fischer,et al.  Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices. , 2013, Environmental science & technology.

[3]  D. L. Freedman,et al.  Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone. , 2013, Chemosphere.

[4]  B. Kueper,et al.  Specification of Matrix Cleanup Goals in Fractured Porous Media , 2013, Ground water.

[5]  C. Newell,et al.  Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. , 2012, Journal of contaminant hydrology.

[6]  J. Abedi,et al.  Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size. , 2012, Journal of contaminant hydrology.

[7]  C. Schaefer,et al.  Diffusive flux and pore anisotropy in sedimentary rocks. , 2012, Journal of contaminant hydrology.

[8]  A. Aplin,et al.  A permeability–porosity relationship for mudstones , 2010 .

[9]  C. Schaefer,et al.  Field‐Scale Evaluation of Bioaugmentation Dosage for Treating Chlorinated Ethenes , 2010 .

[10]  P. Lacombe,et al.  Hydrogeologic Framework of Fractured Sedimentary Rock, Newark Basin, New Jersey , 2010 .

[11]  B. Kueper,et al.  Plume Detachment and Recession Times in Fractured Rock , 2010, Ground water.

[12]  John T. Wilson,et al.  Impact of iron sulfide transformation on trichloroethylene degradation , 2010 .

[13]  Sergei Fomin,et al.  Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant from Fracture into Porous Rock Matrix with Bordering Alteration Zone , 2010 .

[14]  C. Condee,et al.  Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. , 2009, Chemosphere.

[15]  R. Philp,et al.  Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals. , 2009, Chemosphere.

[16]  B. Lollar,et al.  Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. , 2008, Environmental science & technology.

[17]  D. Sholl,et al.  TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. , 2005, Environmental science & technology.

[18]  B. Kueper,et al.  Matrix Diffusion‐Derived Plume Attenuation in Fractured Bedrock , 2005, Ground water.

[19]  Hermann Seitz,et al.  Comparing Different Porosity Measurement Methods for Characterisation of 3D Printed Bone Replacement Scaffolds , 2005 .

[20]  John T. Wilson,et al.  Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. , 2004, Environmental science & technology.

[21]  D. Burris,et al.  Reduction of halogenated ethanes by green rust , 2004, Environmental toxicology and chemistry.

[22]  Thomas E. Mallouk,et al.  Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles , 2002 .

[23]  Woojin Lee,et al.  Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. , 2002, Environmental science & technology.

[24]  R. Weerasooriya,et al.  Pyrite-assisted degradation of trichloroethene (TCE). , 2001, Chemosphere.

[25]  J. C. Evans,et al.  In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms , 2000 .

[26]  A. L. Roberts,et al.  Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles , 1999 .

[27]  K. Hayes,et al.  Kinetics of the Transformation of Trichloroethylene and Tetrachloroethylene by Iron Sulfide , 1999 .

[28]  G. Schraa,et al.  Anaerobic reduction of ethene to ethane in an enrichment culture , 1998 .

[29]  J. Amonette,et al.  Improvements to the Quantitative Assay of Nonrefractory Minerals for Fe(II) and Total Fe Using 1,10-Phenanthroline , 1998 .

[30]  M. Coleman,et al.  The Role of Iron in Mudstone Diagenesis: Comparison of Kimmeridge Clay Formation Mudstones from Onshore and Offshore (UKCS) Localities , 1997 .

[31]  R. Mutch,et al.  Cleanup of fractured rock aquifers: Implications of matrix diffusion , 1993, Environmental monitoring and assessment.

[32]  A. Zehnder,et al.  Complete biological reductive transformation of tetrachloroethene to ethane , 1992, Applied and environmental microbiology.

[33]  E. Sudicky,et al.  Matrix Diffusion Effects on Contaminant Migration from an Injection Well in Fractured Sandstone , 1984 .

[34]  R. E. Meads,et al.  Oxidation state of iron in the Littleham Mudstone Formation of the New Red Sandstone Series (Permian-Triassic) of southeast Devon, England , 1978 .