From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage

Diffusion processes driven by anisotropic diffusion tensors are known to be well-suited for structure-preserving denoising. However, numerical implementations based on finite differences introduce unwanted blurring artifacts that deteriorate these favourable filtering properties. In this paper we introduce a novel discretisation of a fairly general class of anisotropic diffusion processes on a 2-D grid. It leads to a locally semi-analytic scheme (LSAS) that is absolutely stable, simple to implement and offers an outstanding sharpness of filtered images. By showing that this scheme can be translated into a 2-D Haar wavelet shrinkage procedure, we establish a connection between tensor-driven diffusion and anisotropic wavelet shrinkage for the first time. This result leads to coupled shrinkage rules that allow to perform highly anisotropic filtering even with the simplest wavelets.

[1]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[2]  Thomas Brox,et al.  Diffusion Filters and Wavelets: What Can They Learn from Each Other? , 2006, Handbook of Mathematical Models in Computer Vision.

[3]  Alfred M. Bruckstein,et al.  Diffusions and Confusions in Signal and Image Processing , 2001, Journal of Mathematical Imaging and Vision.

[4]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[5]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[6]  Joachim Weickert,et al.  Rotationally Invariant Wavelet Shrinkage , 2003, DAGM-Symposium.

[7]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[8]  Wang Wenyuan,et al.  On the design of optimal derivative filters for coherence-enhancing diffusion filtering , 2004, Proceedings. International Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV 2004..

[9]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. G. Flesia,et al.  Digital Ridgelet Transform Based on True Ridge Functions , 2003 .

[11]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 2000, J. Vis. Commun. Image Represent..

[12]  Jianhong Shen A Note on Wavelets and Diffusions , 2003 .

[13]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..

[14]  Antonin Chambolle,et al.  Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space , 2001, IEEE Trans. Image Process..

[15]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[16]  Hamid Krim,et al.  Towards Bridging Scale-Space and Multiscale Frame Analyses , 2001 .

[17]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[18]  David L. Donoho,et al.  Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..

[19]  Ronald R. Coifman,et al.  New Methods of Controlled Total Variation Reduction for Digital Functions , 2001, SIAM J. Numer. Anal..

[20]  Joachim Weickert,et al.  Diffusion-Inspired Shrinkage Functions and Stability Results for Wavelet Denoising , 2005, International Journal of Computer Vision.

[21]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[22]  Dirk A. Lorenz,et al.  A partial differential equation for continuous nonlinear shrinkage filtering and its application for analyzing MMG data , 2004, SPIE Optics East.

[23]  Peng Lin,et al.  Lattice Boltzmann Models for Anisotropic Diffusion of Images , 2004, Journal of Mathematical Imaging and Vision.

[24]  I. Daubechies,et al.  Harmonic analysis of the space BV. , 2003 .

[25]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[26]  Joachim Weickert,et al.  A Four-Pixel Scheme for Singular Differential Equations , 2005, Scale-Space.

[27]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.