First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies

The IllustrisTNG project is a new suite of cosmological magneto-hydrodynamical simulations of galaxy formation performed with the Arepo code and updated models for feedback physics. Here we introduce the first two simulations of the series, TNG100 and TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters ($10^{13} \leq M_{\rm 200c}/M_{\rm sun} \leq 10^{15}$) at recent times ($z \leq 1$). The richest clusters have half of their total stellar mass bound to satellite galaxies, with the other half being associated with the central galaxy and the diffuse intra-cluster light. The exact ICL fraction depends sensitively on the definition of a central galaxy's mass and varies in our most massive clusters between 20 to 40% of the total stellar mass. Haloes of $5\times 10^{14}M_{\rm sun}$ and above have more diffuse stellar mass outside 100 kpc than within 100 kpc, with power-law slopes of the radial mass density distribution as shallow as the dark matter's ( $-3.5 < \alpha_{\rm 3D} < -3$). Total halo mass is a very good predictor of stellar mass, and vice versa: at $z=0$, the 3D stellar mass measured within 30 kpc scales as $\propto (M_{\rm 500c})^{0.49}$ with a $\sim 0.12$ dex scatter. This is possibly too steep in comparison to the available observational constraints, even though the abundance of TNG less massive galaxies ($< 10^{11}M_{\rm sun}$ in stars) is in good agreement with the measured galaxy stellar mass functions at recent epochs. The 3D sizes of massive galaxies fall too on a tight ($\sim$0.16 dex scatter) power-law relation with halo mass, with $r^{\rm stars}_{\rm 0.5} \propto (M_{\rm 500c})^{0.53}$. Even more fundamentally, halo mass alone is a good predictor for the whole stellar mass profiles beyond the inner few kpc, and we show how on average these can be precisely recovered given a single mass measurement of the galaxy or its halo.

[1]  C. Maraston,et al.  The high mass end of the stellar mass function: dependence on stellar population models and agreement between fits to the light profile , 2016, 1604.01036.

[2]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[3]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[4]  Sergey E. Koposov,et al.  The radial distribution of galaxies in groups and clusters , 2012, 1201.5491.

[5]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[6]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[7]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[8]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[9]  S. Borgani,et al.  On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium , 2013, 1311.0818.

[10]  A. Vikhlinin,et al.  Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos , 2014, Astronomy Letters.

[11]  V. Springel,et al.  The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars , 2015, 1511.08804.

[12]  T. Treu,et al.  Characterizing Intracluster Light in the Hubble Frontier Fields , 2016, 1610.08503.

[13]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[14]  S. White,et al.  EMERGE – an empirical model for the formation of galaxies since z ∼ 10 , 2017, 1705.05373.

[15]  Cfa,et al.  The large-scale properties of simulated cosmological magnetic fields , 2015, 1506.00005.

[16]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[17]  C. Conselice,et al.  A deep probe of the galaxy stellar mass functions at z ∼ 1―3 with the GOODS NICMOS Survey , 2011, 1101.2867.

[18]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[19]  L. Simard,et al.  Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass , 2017, 1701.08206.

[20]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[21]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[22]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[23]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[24]  S. Andreon A low-scatter survey-based mass proxy for clusters of galaxies , 2012, 1211.0790.

[25]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields – I. The kinematic phase , 2015, Monthly Notices of the Royal Astronomical Society.

[26]  G. Stinson,et al.  NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations , 2015, 1503.04818.

[27]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[28]  Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the Lx-T scaling relation , 2008, 0808.0494.

[29]  Federico Marinacci,et al.  Magnetic field formation in the Milky Way like disc galaxies of the Auriga project , 2017, 1701.07028.

[30]  Intergalactic stars in z∼ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data , 2005 .

[31]  S. Andreon Relative distribution of dark matter and stellar mass in three massive galaxy clusters , 2015, 1501.01814.

[32]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[33]  S. White,et al.  Surface photometry of brightest cluster galaxies and intracluster stars in ΛCDM , 2015 .

[34]  Joachim Stadel,et al.  PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys , 2016, 1609.08621.

[35]  V. Springel,et al.  Scaling relations for galaxy clusters in the Millennium-XXL simulation , 2012, 1203.3216.

[36]  Making Galaxies in a Cosmological Context: The Need for Early Stellar Feedback , 2012, 1208.0002.

[37]  S. White,et al.  The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.

[38]  L. Pentericci,et al.  The evolving slope of the stellar mass function at 0.6 ≤ z < 4.5 from deep WFC3 data , 2011, 1111.5728.

[39]  R. Bower,et al.  The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation , 2016, 1608.08218.

[40]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[41]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[42]  R. Teyssier,et al.  The formation of the brightest cluster galaxies in cosmological simulations: the case for AGN feedback , 2011, 1106.5371.

[43]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z ∼ 3 , 2009, 0907.0133.

[44]  Princeton,et al.  Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam , 2017, 1707.01904.

[45]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[46]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes – II. Halo mass is the main driver of galaxy quenching , 2015, 1509.06758.

[47]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[48]  R. Davé,et al.  Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback , 2009, 0901.1880.

[49]  J. Mohr,et al.  Stellar mass to halo mass scaling relation for X-ray-selected low-mass galaxy clusters and groups out to redshift z ≈ 1 , 2015, 1512.01244.

[50]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[51]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[52]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[53]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[54]  S. Borgani,et al.  Brightest cluster galaxies in cosmological simulations: achievements and limitations of active galactic nuclei feedback models , 2013, 1308.3246.

[55]  V. Springel,et al.  The formation of disc galaxies in high-resolution moving-mesh cosmological simulations , 2013, 1305.5360.

[56]  Iac,et al.  Intracluster light at the Frontier - II. The Frontier Fields Clusters , 2017, 1710.03240.

[57]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[58]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[59]  J. Schaye,et al.  Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.

[60]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[61]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[62]  G. Kauffmann,et al.  The massive end of the stellar mass function , 2015, 1509.07418.

[63]  S. White,et al.  The Hydrangea simulations: galaxy formation in and around massive clusters , 2017, 1703.10610.

[64]  M. Bradač,et al.  On the origin of the intracluster light in massive galaxy clusters , 2015, 1501.02251.

[65]  S. Sivanandam,et al.  GALAXY CLUSTER BARYON FRACTIONS REVISITED , 2013, 1309.3565.

[66]  A. Kravtsov THE SIZE–VIRIAL RADIUS RELATION OF GALAXIES , 2012, 1212.2980.

[67]  Simon Prunet,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[68]  V. Springel,et al.  The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation , 2017, 1707.05327.

[69]  S. More,et al.  EVOLUTION OF STELLAR-TO-HALO MASS RATIO AT z = 0–7 IDENTIFIED BY CLUSTERING ANALYSIS WITH THE HUBBLE LEGACY IMAGING AND EARLY SUBARU/HYPER SUPRIME-CAM SURVEY DATA , 2015, 1511.07873.

[70]  J. Brownstein,et al.  The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe , 2016, 1607.04678.

[71]  R. Cen,et al.  Building galaxies by accretion and in-situ star formation , 2012, 1206.0295.

[72]  S. Borgani,et al.  COOL CORE CLUSTERS FROM COSMOLOGICAL SIMULATIONS , 2015, 1509.04247.

[73]  Matthew J. Turk,et al.  Dark Sky Simulations: Early Data Release , 2014, 1407.2600.

[74]  S. Borgani,et al.  Characterizing diffused stellar light in simulated galaxy clusters , 2013, 1310.1396.

[75]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[76]  R. Teyssier,et al.  rhapsody-g simulations - I. The cool cores, hot gas and stellar content of massive galaxy clusters , 2015, 1509.04289.

[77]  Federico Marinacci,et al.  The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time , 2016, 1610.01159.

[78]  J. Schaye,et al.  The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology , 2016, 1603.02702.

[79]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[80]  S. Borgani,et al.  On the formation and physical properties of the intracluster light in hierarchical galaxy formation models , 2013, 1311.2076.

[81]  V. Springel,et al.  Intracluster stars in simulations with active galactic nucleus feedback , 2010, 1001.3018.

[82]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[83]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[84]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[85]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[86]  S. White,et al.  The growth in size and mass of cluster galaxies since z = 2 , 2013, 1301.5319.

[87]  S. Borgani,et al.  Cosmological Simulations of Galaxy Clusters , 2009, 0906.4370.

[88]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[89]  Volker Springel,et al.  Improving the convergence properties of the moving-mesh code AREPO , 2015, 1503.00562.

[90]  The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0 , 2014, 1402.0888.

[91]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[92]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[93]  A. Pontzen,et al.  IN-N-OUT: THE GAS CYCLE FROM DWARFS TO SPIRAL GALAXIES , 2015, 1508.00007.

[94]  F. Marulli,et al.  Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type , 2009, 0910.1093.

[95]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[96]  M. Hilton,et al.  Coevolution of brightest cluster galaxies and intracluster light using CLASH , 2015, 1503.04321.

[97]  I. Trujillo,et al.  INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.

[98]  A. Fontana,et al.  The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .

[99]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[100]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[101]  V. Vikram,et al.  The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile , 2013, 1304.7778.

[102]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[103]  Stefano Borgani,et al.  Formation of Galaxy Clusters , 2012, 1205.5556.

[104]  Q. Guo,et al.  Dwarf galaxy populations in present-day galaxy clusters – I. Abundances and red fractions , 2011, 1105.0674.

[105]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[106]  S. Faber,et al.  Constraining the galaxy–halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties , 2017, 1703.04542.

[107]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[108]  A. Kravtsov,et al.  THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS , 2015, 1509.00853.

[109]  V. Springel,et al.  Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies , 2014, 1406.1174.

[110]  P. Harding,et al.  Diffuse Light in the Virgo Cluster , 2005, astro-ph/0508217.

[111]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[112]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[113]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[114]  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[115]  Frazer R. Pearce,et al.  nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models , 2015, 1503.06065.

[116]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.