Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching

We study an algorithmic framework for computing an elastic orientation‐preserving matching of non‐rigid 3D shapes. We outline an Integer Linear Programming formulation whose relaxed version can be minimized globally in polynomial time. Because of the high number of optimization variables, the key algorithmic challenge lies in efficiently solving the linear program. We present a performance analysis of several Linear Programming algorithms on our problem. Furthermore, we introduce a multiresolution strategy which allows the matching of higher resolution models.

[1]  Hervé Delingette,et al.  Triangular Springs for Modeling Nonlinear Membranes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[3]  I. Daubechies,et al.  Surface Comparison with Mass Transportation , 2009, 0912.3488.

[4]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[5]  Paul M. Thompson,et al.  Brain Surface Parameterization Using Riemann Surface Structure , 2005, MICCAI.

[6]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[7]  Daniel Cremers,et al.  Fast Matching of Planar Shapes in Sub-cubic Runtime , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Lok Ming Lui,et al.  Shape-Based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow , 2010, MICCAI.

[9]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[10]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[11]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[13]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[14]  Guillermo Sapiro,et al.  Geodesics in Shape Space via Variational Time Discretization , 2009, EMMCVPR.

[15]  Daniel Cremers,et al.  Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor , 2011, DAGM-Symposium.

[16]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[17]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[18]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[19]  Martin Rumpf,et al.  An image processing approach to surface matching , 2005, SGP '05.

[20]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[21]  I. Holopainen Riemannian Geometry , 1927, Nature.

[22]  Hao Zhang,et al.  Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..

[23]  D. Bertsekas,et al.  An Alternating Direction Method for Linear Programming , 1990 .

[24]  Wei Zeng,et al.  3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials , 2008, ECCV.

[25]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[26]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[27]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Daniel Cremers,et al.  Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.

[29]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[30]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.