Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching
暂无分享,去创建一个
Daniel Cremers | Thomas Windheuser | Frank R. Schmidt | Ulrich Schlickewei | D. Cremers | Thomas Windheuser | Ulrich Schlickewei | Frank R Schmidt
[1] Hervé Delingette,et al. Triangular Springs for Modeling Nonlinear Membranes , 2008, IEEE Transactions on Visualization and Computer Graphics.
[2] Jovan Popovic,et al. Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..
[3] I. Daubechies,et al. Surface Comparison with Mass Transportation , 2009, 0912.3488.
[4] Michael Garland,et al. Surface simplification using quadric error metrics , 1997, SIGGRAPH.
[5] Paul M. Thompson,et al. Brain Surface Parameterization Using Riemann Surface Structure , 2005, MICCAI.
[6] Guillermo Sapiro,et al. A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.
[7] Daniel Cremers,et al. Fast Matching of Planar Shapes in Sub-cubic Runtime , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[8] Lok Ming Lui,et al. Shape-Based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow , 2010, MICCAI.
[9] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[10] Vladimir Kolmogorov,et al. Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.
[11] Radu Horaud,et al. Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[12] Mathieu Desbrun,et al. Discrete shells , 2003, SCA '03.
[13] Bruno Lévy,et al. Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).
[14] Guillermo Sapiro,et al. Geodesics in Shape Space via Variational Time Discretization , 2009, EMMCVPR.
[15] Daniel Cremers,et al. Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor , 2011, DAGM-Symposium.
[16] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[17] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..
[18] Leif Kobbelt,et al. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .
[19] Martin Rumpf,et al. An image processing approach to surface matching , 2005, SGP '05.
[20] Radu Horaud,et al. SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.
[21] I. Holopainen. Riemannian Geometry , 1927, Nature.
[22] Hao Zhang,et al. Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..
[23] D. Bertsekas,et al. An Alternating Direction Method for Linear Programming , 1990 .
[24] Wei Zeng,et al. 3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials , 2008, ECCV.
[25] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[26] Wojciech Matusik,et al. Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..
[27] Paul J. Besl,et al. A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Daniel Cremers,et al. Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.
[29] Leonidas J. Guibas,et al. One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.
[30] Nikos Paragios,et al. Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[31] Leonidas J. Guibas,et al. Robust global registration , 2005, SGP '05.