Symmetry of hexagonal ring and microwave dielectric properties of (Mg1−xLnx)2Al4Si5O18+x (Ln=La, Sm) cordierite-type ceramics

[1]  Kaixin Song,et al.  Effect of TiO2 Doping on the Structure and Microwave Dielectric Properties of Cordierite Ceramics , 2015 .

[2]  P. Liu,et al.  Phase composition and microwave dielectric properties of SrTiO3 modified Mg2Al4Si5O18 cordierite ceramics , 2015 .

[3]  Shiqing Xu,et al.  Sintering behavior and microwave dielectric properties of CaMgSi2O6 ceramics with Al2O3 addition , 2014 .

[4]  Vijay Kumar,et al.  Some studies on ceria-zirconia reinforced solvothermally synthesized cordierite nano-composites , 2014 .

[5]  C. Karthik,et al.  Effect of Ca2+ Substitution on the Structure, Microstructure, and Microwave Dielectric Properties of Sr2Al2SiO7 Ceramic , 2013 .

[6]  H. Ohsato,et al.  Research & Developments for Millimeter-Wave Dielectric Forsterite with Low Dielectric Constant, High Q, and Zero Temperature Coefficient of Resonant Frequency , 2013 .

[7]  C. Cheon,et al.  Millimeter-wave dielectrics of indialite/cordierite glass ceramics: Estimating Si/Al ordering by volume and covalency of Si/Al octahedron , 2013 .

[8]  C. Karthik,et al.  Crystal Structure and Microwave Dielectric Properties of LiRE9(SiO4)6O2 Ceramics (RE = La, Pr, Nd, Sm, Eu, Gd, and Er) , 2013 .

[9]  Xiang Ding,et al.  Structure and properties analysis for low-loss (Mg1−xCox)TiO3 microwave dielectric materials prepared by reaction-sintering method , 2012 .

[10]  D. Többens,et al.  Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite , 2011 .

[11]  T. Taniguchi,et al.  Development of Al2O3–TiO2 composite ceramics for high-power millimeter-wave applications , 2009 .

[12]  X. M. Chen,et al.  Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics , 2008 .

[13]  X. Chen,et al.  Modification of MgAl2O4 Microwave Dielectric Ceramics by Zn Substitution , 2007 .

[14]  I. Reaney,et al.  Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks , 2006 .

[15]  B. Hatton,et al.  Materials chemistry for low-k materials , 2006 .

[16]  M. J. Haun,et al.  Microstructures and Properties of Three Composites of Alumina, Mullite, and Monoclinic SrAl2Si2O8 , 2004 .

[17]  S. Udagawa,et al.  Crystal Structures and Mechanism of Thermal Expansion of High Cordierite and Its Solid Solutions , 1986 .

[18]  A. Putnis The distortion index in anhydrous Mg-Cordierite , 1980 .

[19]  G. V. Gibbs,et al.  The polymorphism of cordierite; II, The crystal structure of indialite , 1977 .

[20]  G. V. Gibbs The polymorphism of cordierite I: the crystal structure of low cordierite , 1966 .

[21]  B. W. Hakki,et al.  A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .

[22]  K. Kakimoto,et al.  Origin of improvement of Q based on high symmetry accompanying Si–Al disordering in cordierite millimeter-wave ceramics , 2010 .

[23]  K. Kakimoto,et al.  Effect of Ni substitution on the microwave dielectric properties of cordierite , 2007 .

[24]  Yiping Guo,et al.  Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency , 2006 .

[25]  R. Pullar,et al.  Low-temperature microwave and THz dielectric response in novel microwave ceramics , 2006 .

[26]  H. Ohsato Research and development of microwave dielectric ceramics for wireless communications , 2005 .

[27]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[28]  A. Miyashiro Cordierite-indialite relations , 1957 .