Optimal disturbance attenuation with control weighting

An H∞-optimal control problem is treated in the context of discrete-time multi-input/output linear systems. The cost is the maximum, over all disturbances of unit energy, of a weighted sum of the energies of the plant's input and output. The cost is minimized over all causal controllers achieving internal stability of the feedback loop.

[1]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[2]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[3]  George Zames,et al.  Design of H∞-optimal multivariable feedback systems , 1983, The 22nd IEEE Conference on Decision and Control.

[4]  H. Kwakernaak Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .

[5]  H. Kwakernaak Minimax Frequency Domain Optimization of Multivariable Linear Feedback Systems , 1984 .

[6]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[7]  J. Doyle Synthesis of robust controllers and filters , 1983, The 22nd IEEE Conference on Decision and Control.

[8]  S. Parrott,et al.  On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem , 1978 .

[9]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[10]  S. Power Hankel Operators on Hilbert Space , 1980 .

[11]  Edmond A. Jonckheere,et al.  L∞-compensation with mixed sensitivity as a broadband matching problem , 1984 .

[12]  J. Helton,et al.  Broadbanding:Gain equalization directly from data , 1981 .

[13]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[14]  Ian Postlethwaite,et al.  An H∞-minimax approach to the design of robust control systems , 1984 .

[15]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[16]  Michael G. Safonov,et al.  Multivariable L∞ sensitivity optimization and hankel approximation , 1983, 1983 American Control Conference.

[17]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[18]  J. W. Helton,et al.  Worst case analysis in the frequency domain: The H ∞ approach to control , 1985 .

[19]  G. Zames,et al.  On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .