On visual distances in density estimation: the Hausdorff choice
暂无分享,去创建一个
[1] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.
[2] A note on the integrated squared error of a kernel density estimator in non-smooth cases , 1997 .
[3] E. Hobson. The Theory of Functions of a real Variable. , 1922 .
[4] K. Chung,et al. An estimate concerning the Kolmogoroff limit distribution , 1949 .
[5] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[6] On Qualitative Smoothness of Kernel Density Estimates , 1995 .
[7] G. Beer. Upper semicontinuous functions and the stone approximation theorem , 1982 .
[8] James Stephen Marron,et al. Visual Error Criteria for Qualitative Smoothing , 1995 .
[9] D. W. Scott,et al. Nonparametric Estimation of Probability Densities and Regression Curves , 1988 .
[10] Prakasa Rao. Nonparametric functional estimation , 1983 .
[11] A. N. Kolmogorov,et al. On Skorokhod Convergence , 1956 .
[12] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[13] Z. Artstein,et al. A Strong Law of Large Numbers for Random Compact Sets , 1975 .
[14] Ilya Molchanov. Limit Theorems for Unions of Random Closed Sets , 1993 .
[15] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[16] B. Silverman. Density estimation for statistics and data analysis , 1986 .