Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement

Astrophysical relativistic flow problems require high-resolution three-dimensional (3D) numerical simulations. In this paper, we describe a new parallel 3D code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used the method of lines to discretize the SRHD equations spatially and a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third-order convex essentially nonoscillatory (CENO) and third- and fifth-order weighted essentially nonoscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas, and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code enzo. We discuss the coupling of the AMR framework with the relativistic solvers. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. We also present the results of two 3D simulations of astrophysical jets: AGN jets and GRB jets. Resolution study of those two cases further highlights the need of high resolutions to calculate accurately relativistic flow problems.

[1]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[2]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[3]  Stanley Osher,et al.  Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .

[4]  Weiqun Zhang,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[5]  John F. Hawley,et al.  A Numerical Study of Nonspherical Black Hole Accretion , 1984 .

[6]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[7]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[8]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[9]  Akira Mizuta,et al.  Collimated Jet or Expanding Outflow: Possible Origins of Gamma-Ray Bursts and X-Ray Flashes , 2006, astro-ph/0607544.

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  S. E. Woosley,et al.  The propagation and eruption of relativistic jets from the stellar progenitors of gamma-ray bursts , 2004 .

[12]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[13]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[14]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[15]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[16]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[17]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[18]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[19]  S. J. Tingay,et al.  Relativistic motion in a nearby bright X-ray source , 1995, Nature.

[20]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[21]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[22]  James J. Quirk,et al.  A Contribution to the Great Riemann Solver Debate , 1994 .

[23]  M. Norman,et al.  Why Ultrarelativistic Numerical Hydrodynamics is Difficult , 1986 .

[24]  Antonio Marquina,et al.  Morphology and Dynamics of Relativistic Jets , 1997 .

[25]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[26]  Ewald Müller,et al.  Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics , 1996 .

[27]  James R. Wilson Numerical Study of Fluid Flow in a Kerr Space , 1972 .

[28]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[29]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[30]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[31]  M. Rees,et al.  Super-luminal expansion in extragalactic radio sources , 1977, Nature.

[32]  A powerful hydrodynamic booster for relativistic jets , 2006, astro-ph/0602437.

[33]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[34]  Larry Smarr,et al.  A numerical study of nonspherical black hole accretion. II: Finite differencing and code calibration , 1984 .

[35]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[36]  Lifan Wang,et al.  The supernova-gamma-ray burst connection , 1998, astro-ph/9806212.

[37]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[38]  Philip A. Hughes,et al.  Three-dimensional Hydrodynamic Simulations of Relativistic Extragalactic Jets , 2002, astro-ph/0202402.

[39]  Re'em Sari,et al.  Lower Limits on Lorentz Factors in Gamma-Ray Bursts , 2000, astro-ph/0011508.

[40]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[41]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[42]  Angelo Marcello Anile,et al.  Relativistic fluids and magneto-fluids , 2005 .

[43]  J. R. Wilson,et al.  Planar numerical cosmology. II. The difference equations and numerical tests , 1984 .

[44]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[45]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[46]  J. Font,et al.  Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations , 2004, astro-ph/0407541.

[47]  The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.