Drosha Regulates Gene Expression Independently of RNA Cleavage Function

[1]  David P. Bartel,et al.  Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing , 2013, Cell.

[2]  B. Berkhout,et al.  Microprocessor, Setx, Xrn2, and Rrp6 Co-operate to Induce Premature Termination of Transcription by RNAPII , 2012, Cell.

[3]  Eduardo Eyras,et al.  DGCR8 HITS-CLIP reveals novel functions for the Microprocessor , 2012, Nature Structural &Molecular Biology.

[4]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[5]  R. Livi,et al.  Evolutionary trends of GC/AT distribution patterns in promoters. , 2011, Molecular phylogenetics and evolution.

[6]  Konstantina Skourti-Stathaki,et al.  Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination , 2011, Molecular cell.

[7]  C. S. Sullivan,et al.  Expanding the role of Drosha to the regulation of viral gene expression , 2011, Proceedings of the National Academy of Sciences.

[8]  Piero Carninci,et al.  Chromatin-associatedRNA interference components contribute to transcriptional regulation in Drosophila , 2011 .

[9]  Thomas A Neubert,et al.  Canonical and alternate functions of the microRNA biogenesis machinery. , 2010, Genes & development.

[10]  Gregory J. Hannon,et al.  Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. , 2010, Molecular cell.

[11]  M. Siomi,et al.  Posttranscriptional regulation of microRNA biogenesis in animals. , 2010, Molecular cell.

[12]  D. Cacchiarelli,et al.  Coupled RNA Processing and Transcription of Intergenic Primary MicroRNAs , 2009, Molecular and Cellular Biology.

[13]  J. Yong,et al.  Ars2 Links the Nuclear Cap-Binding Complex to RNA Interference and Cell Proliferation , 2009, Cell.

[14]  S. Cherry,et al.  Ars2 Regulates Both miRNA- and siRNA- Dependent Silencing and Suppresses RNA Virus Infection in Drosophila , 2009, Cell.

[15]  J. Ule,et al.  CLIP: construction of cDNA libraries for high-throughput sequencing from RNAs cross-linked to proteins in vivo. , 2009, Methods.

[16]  R. Gregory,et al.  Post-transcriptional control of DGCR8 expression by the Microprocessor. , 2009, RNA.

[17]  Sylvain Egloff,et al.  Chromatin Structure Is Implicated in “Late” Elongation Checkpoints on the U2 snRNA and β-Actin Genes , 2009, Molecular and Cellular Biology.

[18]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[19]  Sebastian Kadener,et al.  Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. , 2009, RNA.

[20]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[21]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[22]  Mikkel H. Schierup,et al.  RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters , 2008, Science.

[23]  N. Chua,et al.  Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. , 2008, Plant & cell physiology.

[24]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[25]  Simak Ali,et al.  The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. , 2008, Biochemical Society transactions.

[26]  Xuemei Chen,et al.  The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis , 2008, Proceedings of the National Academy of Sciences.

[27]  Xiang-Dong Fu,et al.  The splicing factor SC35 has an active role in transcriptional elongation , 2008, Nature Structural &Molecular Biology.

[28]  C. Glass,et al.  Induced ncRNAs Allosterically Modify RNA Binding Proteins in cis to Inhibit Transcription , 2008, Nature.

[29]  John T. Lis,et al.  Transcription Regulation Through Promoter-Proximal Pausing of RNA Polymerase II , 2008, Science.

[30]  I. Dunham,et al.  Tissue-specific histone modification and transcription factor binding in alpha globin gene expression. , 2007, Blood.

[31]  S. Guil,et al.  The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a , 2007, Nature Structural &Molecular Biology.

[32]  V. Kim,et al.  Processing of intronic microRNAs , 2007, The EMBO journal.

[33]  C. Bracken,et al.  SNIP1 is a candidate modifier of the transcriptional activity of c-Myc on E box-dependent target genes. , 2006, Molecular cell.

[34]  B. Cullen,et al.  Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha , 2005, The EMBO journal.

[35]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[36]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[37]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[38]  N. Proudfoot,et al.  Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites , 2004, Nature.

[39]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[40]  C. Gooding,et al.  Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. , 2004, Molecular cell.

[41]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[42]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[43]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[44]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[45]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[46]  P. Gunning,et al.  The 3'-end of the human beta-actin gene enhances activity of the beta-actin expression vector system: construction of improved vectors. , 1997, Journal of biochemical and biophysical methods.