Analysis of a stochastic tri-trophic food-chain model with harvesting

We consider a tri-trophic stochastic food-chain model with harvesting. We first establish critical values between persistence in mean and extinction for each species. The results show that persistence and extinction of a species only depends on the demographic impacts of environmental stochasticity on the species and species at lower tropic levels; however, the mean abundance of a species depends on the impacts of environmental stochasticity at all trophic levels. Then we consider stability in distribution of the model. Finally, we provide a necessary and sufficient condition for existence of optimal harvesting strategy and give the optimal harvesting effort and maximum of sustainable yield. The results show that the optimal harvesting strategy is closely related to the stochastic noises in the model.

[1]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[2]  Peter Chesson,et al.  The stabilizing effect of a random environment , 1982 .

[3]  Meng Liu,et al.  Optimal Harvesting of a Stochastic Logistic Model with Time Delay , 2015, J. Nonlinear Sci..

[4]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[5]  Meng Liu,et al.  Optimal harvesting policy of a stochastic food chain population model , 2014, Appl. Math. Comput..

[6]  Ke Wang,et al.  Optimal Harvesting for a Logistic Population Dynamics Driven by a Lévy Process , 2014, J. Optim. Theory Appl..

[7]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Chao Zhu,et al.  On Optimal Harvesting Problems in Random Environments , 2010, SIAM J. Control. Optim..

[9]  Joseph H. Connell,et al.  On the Prevalence and Relative Importance of Interspecific Competition: Evidence from Field Experiments , 1983, The American Naturalist.

[10]  F. Hanson,et al.  Optimal harvesting of a logistic population in an environment with stochastic jumps , 1986, Journal of mathematical biology.

[11]  R. Watson,et al.  Stochastic three species systems , 1990 .

[12]  Ke Wang,et al.  Optimal harvesting policy for general stochastic Logistic population model , 2010 .

[13]  Thomas G. Hallam,et al.  Persistence in food webs—I Lotka-Volterra food chains , 1979 .

[14]  B. Øksendal,et al.  Optimal harvesting from a population in a stochastic crowded environment. , 1997, Mathematical biosciences.

[15]  Peter L. Ralph,et al.  Stochastic population growth in spatially heterogeneous environments , 2011, Journal of Mathematical Biology.

[16]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[17]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[18]  W. Rudin Principles of mathematical analysis , 1964 .

[19]  C. Yuan,et al.  Stochastic Population Dynamics Driven by Levy Noise , 2011, 1105.1174.

[20]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[21]  S. Schreiber Persistence for stochastic difference equations: a mini-review , 2011, 1109.5967.

[22]  Thomas C. Gard Persistence in stochastic food web models , 1984 .

[23]  Sze-Bi Hsu,et al.  Extinction of top-predator in a three-level food-chain model , 1998 .

[24]  Meng Liu,et al.  Survival Analysis of Stochastic Competitive Models in a Polluted Environment and Stochastic Competitive Exclusion Principle , 2010, Bulletin of mathematical biology.

[25]  R M May,et al.  Harvesting Natural Populations in a Randomly Fluctuating Environment , 1977, Science.

[26]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[27]  Xiaoling Zou,et al.  Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process , 2013, Appl. Math. Lett..

[28]  R. Paine Road Maps of Interactions or Grist for Theoretical Development , 1988 .

[29]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[30]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[31]  Wenxue Li,et al.  Global stability analysis for stochastic coupled systems on networks , 2011, Autom..

[32]  C. Braumann,et al.  Itô versus Stratonovich calculus in random population growth. , 2007, Mathematical biosciences.

[33]  Peter Chesson,et al.  Predator-Prey Theory and Variability , 1978 .

[34]  M. Turelli Random environments and stochastic calculus. , 1977, Theoretical population biology.

[35]  Daqing Jiang,et al.  A note on nonautonomous logistic equation with random perturbation , 2005 .

[36]  V. Hutson,et al.  Permanent coexistence in general models of three interacting species , 1985, Journal of mathematical biology.

[37]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[38]  Liu Huaping,et al.  The threshold of survival for system of two species in a polluted environment , 1991 .

[39]  Xuerong Mao,et al.  Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation , 2009 .

[40]  Ke Wang,et al.  Graph-theoretic approach to stability of multi-group models with dispersal , 2014 .

[41]  Meng Liu,et al.  Optimal harvesting policy of a stochastic predator-prey model with time delay , 2015, Appl. Math. Lett..

[42]  Michael Y. Li,et al.  Global-stability problem for coupled systems of differential equations on networks , 2010 .

[43]  C. Braumann,et al.  Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. , 2002, Mathematical biosciences.

[44]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[45]  Nicola Bruti-Liberati,et al.  Monte Carlo Simulation for Stochastic Differential Equations , 2010 .

[46]  Jonathan Roughgarden,et al.  A Simple Model for Population Dynamics in Stochastic Environments , 1975, The American Naturalist.

[47]  Donald Ludwig,et al.  Optimal Harvesting of a Randomly Fluctuating Resource. II: Numerical Methods and Results , 1979 .

[48]  Bruce A. McPheron,et al.  Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies , 1980 .

[49]  G. Yin,et al.  On competitive Lotka-Volterra model in random environments , 2009 .

[50]  S. Schreiber,et al.  Persistence in fluctuating environments for interacting structured populations , 2013, Journal of Mathematical Biology.

[51]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[52]  Luis H. R. Alvarez,et al.  Optimal harvesting of stochastically fluctuating populations , 1998 .

[53]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[54]  Ke Wang,et al.  Dynamics of a Two-Prey One-Predator System in Random Environments , 2013, J. Nonlinear Sci..

[55]  Sebastian J. Schreiber,et al.  Persistence in fluctuating environments , 2010, Journal of mathematical biology.

[56]  Chunmei Zhang,et al.  Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems With Lévy Noise on Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[57]  Steinar Engen,et al.  Optimal Harvesting of Fluctuating Populations with a Risk of Extinction , 1995, The American Naturalist.