Superlithiophilic, Ultrastable, and Ionic‐Conductive Interface Enabled Long Lifespan All‐Solid‐State Lithium‐Metal Batteries under High Mass Loading

[1]  Liquan Chen,et al.  High‐Capacity, Long‐Life Iron Fluoride All‐Solid‐State Lithium Battery with Sulfide Solid Electrolyte , 2023, Advanced Energy Materials.

[2]  Xiangfeng Liu,et al.  Directly Using Li2CO3 as a Lithiophobic Interlayer to Inhibit Li Dendrites for High-Performance Solid-State Batteries , 2023, ACS Energy Letters.

[3]  J. Janek,et al.  Challenges in speeding up solid-state battery development , 2023, Nature Energy.

[4]  Shubin Yang,et al.  Phase‐Changeable Dynamic Conformal Electrode/electrolyte Interlayer enabling Pressure‐Independent Solid‐State Lithium Metal Batteries , 2023, Advanced materials.

[5]  Xiangfeng Liu,et al.  Constructing a Superlithiophilic 3D Burr‐Microsphere Interface on Garnet for High‐Rate and Ultra‐Stable Solid‐State Li Batteries , 2023, Advanced science.

[6]  D. Sui,et al.  Biomass-Derived Carbon Coated Sio2 Nanotubes as Superior Anode for Lithium-Ion Batteries , 2023, SSRN Electronic Journal.

[7]  Chenyang Zhao,et al.  A Bridge between Ceramics Electrolyte and Interface Layer to Fast Li+ Transfer for Low Interface Impedance Solid‐State Batteries , 2022, Advanced Functional Materials.

[8]  Yijin Liu,et al.  Stabilization of garnet/Li interphase by diluting the electronic conductor , 2022, Science advances.

[9]  Yang Zhao,et al.  Ionic Conductive and Highly-Stable Interface for Alkali Metal Anodes. , 2022, Small.

[10]  Bingbing Tian,et al.  Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li7La3Zr2O12. , 2022, ACS applied materials & interfaces.

[11]  M. H. Lee,et al.  Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries , 2022, Science advances.

[12]  M. Kodama,et al.  Improvement of lithium-metal electrode performance of all-solid-state batteries by shot peening on solid-electrolyte surface , 2022, Journal of Power Sources.

[13]  Bingbing Tian,et al.  From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte , 2022, Journal of Energy Chemistry.

[14]  X. Tao,et al.  Biomass-Derived Anion-Anchoring Nano-CaCO3 Coating for Regulating Ion Transport on Li Metal Surface. , 2022, Nano letters.

[15]  Liquan Chen,et al.  Progress in solvent-free dry-film technology for batteries and supercapacitors , 2022, Materials Today.

[16]  H. Arandiyan,et al.  Recent Advances of Li7La3Zr2O12-based Solid-state Lithium Batteries towards High Energy Density , 2022, Energy Storage Materials.

[17]  Zhian Zhang,et al.  Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer , 2022, Energy Storage Materials.

[18]  Shichao Wu,et al.  Solid-state lithium batteries: Safety and prospects , 2022, eScience.

[19]  Chengxin Wang,et al.  In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode , 2022, Energy Storage Materials.

[20]  Xiqian Yu,et al.  Controlling the Li deposition below the interface , 2022, eScience.

[21]  L. Wan,et al.  Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries. , 2022, Journal of the American Chemical Society.

[22]  Lilu Liu,et al.  Solid state ionics - selected topics and new directions , 2022, Progress in Materials Science.

[23]  Sewon Kim,et al.  Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries , 2021, ACS Energy Letters.

[24]  Jin Leng,et al.  Insight into The Solid-liquid Electrolyte Interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based Liquid Electrolyte , 2021, Applied Surface Science.

[25]  Yan‐Bing He,et al.  Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery , 2021 .

[26]  Yongping Zheng,et al.  In Situ Chemical Lithiation Transforms Diamond‐Like Carbon into an Ultrastrong Ion Conductor for Dendrite‐Free Lithium‐Metal Anodes , 2021, Advanced materials.

[27]  M. Zhong,et al.  Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery. , 2021, ACS applied materials & interfaces.

[28]  Bingbing Chen,et al.  Smart Construction of an Intimate Lithium | Garnet Interface for All‐Solid‐State Batteries by Tuning the Tension of Molten Lithium , 2021, Advanced Functional Materials.

[29]  Luhan Ye,et al.  A dynamic stability design strategy for lithium metal solid state batteries , 2021, Nature.

[30]  Haibo Jin,et al.  Surface Potential Regulation Realizing Stable Sodium/Na3 Zr2 Si2 PO12 Interface for Room-Temperature Sodium Metal Batteries. , 2021, Small.

[31]  L. Arava,et al.  An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches , 2021 .

[32]  Chaohe Xu,et al.  Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. , 2021, Science bulletin.

[33]  Z. Bi,et al.  Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes , 2021 .

[34]  Qingyu Li,et al.  Enhanced interfacial reaction interface stability of Ni-rich cathode materials by fabricating dual-modified layer coating for lithium-ion batteries , 2021 .

[35]  Xin Guo,et al.  Inorganic Solid Electrolytes for All‐Solid‐State Sodium Batteries: Fundamentals and Strategies for Battery Optimization , 2020, Advanced Functional Materials.

[36]  Chaohe Xu,et al.  Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical oxidation and Cr doping to achieve high performance. , 2020, Science bulletin.

[37]  Lingping Kong,et al.  Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces , 2020, Advanced Energy Materials.

[38]  Hussein A. Younus,et al.  An overview of the characteristics of advanced binders for high-performance Li–S batteries , 2020 .

[39]  Tao Zhang,et al.  On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes , 2020, Nature Communications.

[40]  Z. Wen,et al.  A 3D Cross‐Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet‐Type Solid‐State Lithium Batteries , 2020, Advanced Functional Materials.

[41]  Wangda Li,et al.  Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage , 2020, Science.

[42]  Chaohe Xu,et al.  Ru Single-Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li-O2 Batteries. , 2020, Journal of the American Chemical Society.

[43]  R. Li,et al.  A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries , 2020, Nature communications.

[44]  Yunhui Huang,et al.  A writable lithium metal ink , 2020, Science China Chemistry.

[45]  Xuejun Zhou,et al.  Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting , 2020, Nature Communications.

[46]  M. Kotobuki,et al.  Highly conductive lithium aluminum germanium phosphate solid electrolyte prepared by sol-gel method and hot-pressing , 2020 .

[47]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[48]  Yan‐Bing He,et al.  In Situ Construction of an Ultra‐Stable Conductive Composite Interface for High‐Voltage All‐Solid‐State Lithium Metal Batteries , 2020, Angewandte Chemie.

[49]  Xiulin Fan,et al.  Tuning the Anode–Electrolyte Interface Chemistry for Garnet‐Based Solid‐State Li Metal Batteries , 2020, Advanced materials.

[50]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[51]  Jiayan Luo,et al.  Long Cycling Life Solid-State Li Metal Batteries with Stress Self-Adapted Li/Garnet Interface. , 2020, Nano letters.

[52]  Yunhui Huang,et al.  Is graphite lithiophobic or lithiophilic? , 2020, National science review.

[53]  Yunhui Huang,et al.  Graphitic Carbon Nitride (g‐C 3 N 4 ): An Interface Enabler for Solid‐State Lithium Metal Batteries , 2019 .

[54]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[55]  G. Bormans,et al.  Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging , 2019, Nanomaterials.

[56]  Yan‐Bing He,et al.  Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[57]  Xiaoting Lin,et al.  In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries , 2019, Nano Energy.

[58]  Chenglin Yan,et al.  Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery , 2019, Nature Communications.

[59]  Yayuan Liu,et al.  Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework , 2017, Science Advances.

[60]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[61]  Sen Xin,et al.  A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. , 2017, Angewandte Chemie.

[62]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[63]  Michel Armand,et al.  The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , 2004, Nature materials.

[64]  W. Luo,et al.  Magnetic Actuation Enables Programmable Lithium Metal Engineering , 2022 .