Filling Gaps of Monthly Terra/MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  A. Tatem,et al.  Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data , 2008, PloS one.

[3]  Gautam Bisht,et al.  Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains , 2006 .

[4]  Nathaniel A. Brunsell,et al.  How can we use MODIS land surface temperature to validate long‐term urban model simulations? , 2014 .

[5]  Yang Zhang,et al.  Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information , 2018, Remote. Sens..

[6]  Xiaolu Li,et al.  An Effective Similar-Pixel Reconstruction of the High-Frequency Cloud-Covered Areas of Southwest China , 2019, Remote. Sens..

[7]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[8]  Damien Garcia,et al.  Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..

[9]  Yuyu Zhou,et al.  Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States , 2018 .

[10]  Bo Hu,et al.  Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data , 2017, Comput. Geosci..

[11]  Yi Liu,et al.  A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations , 2012, Environ. Model. Softw..

[12]  F. Gao,et al.  Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data , 2014 .

[13]  Liangpei Zhang,et al.  Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression , 2015, IEEE Geoscience and Remote Sensing Letters.

[14]  Da Li,et al.  jag simple retrieval method of land surface temperature from AMSR-E passive icrowave data — A case study over Southern China during the strong snow isaster of 2008 , 2010 .

[15]  I. D. Feis,et al.  Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances , 2013 .

[16]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[17]  Douglas W. Nychka,et al.  Statistical significance of trends and trend differences in layer-average atmospheric temperature time series , 2000 .

[18]  Linna Chai,et al.  Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method , 2016, Remote. Sens..

[19]  Peter M. Atkinson,et al.  An effective approach for gap-filling continental scale remotely sensed time-series , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[20]  P. Atkinson,et al.  Deriving DSMs from LiDAR data with kriging , 2002 .

[21]  Wade T. Crow,et al.  Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. , 2018, Remote sensing of environment.

[22]  J. Arnó,et al.  Review. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management , 2009 .

[23]  Damien Garcia,et al.  A fast all-in-one method for automated post-processing of PIV data , 2011, Experiments in fluids.

[24]  Yousuke Noumi,et al.  Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects , 2009, Sensors.

[25]  I. D. Feis,et al.  Convergence for the regularized inversion of Fourier series , 1997 .

[26]  Markus Neteler,et al.  Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data , 2010, Remote. Sens..

[27]  Rekha Vig,et al.  Speech Compression using Multi-Resolution Hybrid Wavelet using DCT and Walsh Transforms , 2018 .

[28]  Hao Zhang,et al.  Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA) , 2018, Atmosphere.

[29]  Zhao-Liang Li,et al.  A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data , 2017 .

[30]  Z. Wan New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products , 2008 .

[31]  Edzer Pebesma,et al.  Spatio‐temporal interpolation of daily temperatures for global land areas at 1 km resolution , 2014 .

[32]  Markus Metz,et al.  A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data , 2017, Remote. Sens..

[33]  Gang Yang,et al.  An Integrated Method for Reconstructing Daily MODIS Land Surface Temperature Data , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  B. Santer,et al.  Uncertainties in observationally based estimates of temperature change in the free atmosphere , 1999 .

[35]  Sibo Duan,et al.  Spatiotemporal Reconstruction of Land Surface Temperature Derived From FengYun Geostationary Satellite Data , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  P. Sellers,et al.  The First ISLSCP Field Experiment (FIFE) , 1988 .

[37]  Ji Zhou,et al.  A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Gautam Bisht,et al.  Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days , 2005 .

[39]  William L. Crosson,et al.  A daily merged MODIS Aqua–Terra land surface temperature data set for the conterminous United States , 2012 .

[40]  Shuo Xu,et al.  Reconstructing All-Weather Land Surface Temperature Using the Bayesian Maximum Entropy Method Over the Tibetan Plateau and Heihe River Basin , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Gang Yang,et al.  Recovering Quantitative Remote Sensing Products Contaminated by Thick Clouds and Shadows Using Multitemporal Dictionary Learning , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Smoothing data with correlated noise via Fourier transform , 2000 .

[43]  Sukadev Meher,et al.  A Hybrid Image Compression Scheme Using DCT and Fractal Image Compression , 2013, Int. Arab J. Inf. Technol..

[44]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[45]  H. Mannstein,et al.  Surface Energy Budget, Surface Temperature and Thermal Inertia , 1987 .

[46]  Yongming Xu,et al.  Reconstruction of the land surface temperature time series using harmonic analysis , 2013, Comput. Geosci..

[47]  Seokhyeon Kim,et al.  Building a Flood-Warning Framework for Ungauged Locations Using Low Resolution, Open-Access Remotely Sensed Surface Soil Moisture, Precipitation, Soil, and Topographic Information , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  Seokhyeon Kim,et al.  Using 3D robust smoothing to fill land surface temperature gaps at the continental scale , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[49]  Markus Metz,et al.  Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail , 2014, Remote. Sens..

[50]  D. Lamb,et al.  Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images , 2003 .

[51]  G. Heuvelink,et al.  Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images , 2013, Theoretical and Applied Climatology.