Nondiagonal QFT Controller Design for a Three-Input Three-Output Industrial Furnace

This paper addresses the temperature control of a three-input (power supplies) three-output (temperature sensors) industrial furnace used to manufacture large composite pieces. Due to the multivariable condition of the process, the strong interaction between the three control loops and the presence of model uncertainties, a sequential design methodology based on quantitative feedback theory is proposed to design the controllers. The methodology derives a full matrix compensator that improves reliability, stability, and control. It not only copes with furnace model uncertainties but also enhances the reference tracking and the homogeneousness of the composite piece temperature while minimizing the coupling effects among the furnace zones and the operating costs.

[1]  Paul M. J. Van den Hof,et al.  An indirect method for transfer function estimation from closed loop data , 1993, Autom..

[2]  Keith J. Burnham,et al.  Four-term bilinear PID controller applied to an industrial furnace , 2004 .

[3]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[4]  A. Dunoyer,et al.  Control of continuously-operated high temperature furnaces , 1998 .

[5]  P. E. Wellstead,et al.  Introduction to physical system modelling , 1979 .

[6]  Ali Esmaili,et al.  Direct and two-step methods for closed-loop identification: a comparison of asymptotic and finite data set performance , 2000 .

[7]  Isaac Horowitz Improved design technique for uncertain multiple-input-multiple-output feedback systems† , 1982 .

[8]  István Kollár,et al.  Identification of a furnace from quasi-periodic measurements , 2003, IEEE Trans. Instrum. Meas..

[9]  Edward Boje,et al.  Quantitative multivariable feedback design for a turbofan engine with forward path decoupling , 1999 .

[10]  Mohamed Abdelrahman,et al.  Experimental control of a cupola furnace , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[11]  I. Horowitz Synthesis of feedback systems , 1963 .

[12]  Thomas E. Marlin,et al.  Process Control: Designing Processes and Control Systems for Dynamic Performance , 1995 .

[13]  Yaman Arkun,et al.  A general method to calculate input-output gains and the relative gain array for integrating processes , 1990 .

[14]  Yucai Zhu,et al.  Identification of Multivariable Industrial Processes , 1993 .

[15]  William Leithead,et al.  m-Input m-output feedback control by individual channel design Part 1. Structural issues , 1992 .

[16]  John O'Reilly Multivariable Control for Industrial Applications , 1987 .

[17]  Matthew A. Franchek,et al.  Robust Nondiagonal Controller Design for Uncertain Multivariable Regulating Systems , 1997 .

[18]  Mario Garcia-Sanz,et al.  Model identification of a multivariable industrial furnace , 2003 .

[19]  Sigurd Skogestad,et al.  The use of RGA and condition number as robustness measures , 1996 .

[20]  Maciejowsk Multivariable Feedback Design , 1989 .

[21]  Mario Garcia-Sanz,et al.  Quantitative non‐diagonal controller design for multivariable systems with uncertainty , 2002 .

[22]  Steven J. Rasmussen,et al.  Quantitative feedback theory: fundamentals and applications: C. H. Houpis and S. J. Rasmussen; Marcel Dekker, New York, 1999, ISBN: 0-8247-7872-3 , 2001, Autom..

[23]  Sam G. Parler,et al.  Predicting Operating Temperature and Expected Lifetime of Aluminum-Electrolytic Bus Capacitors with Thermal Modeling , 1999 .

[24]  I. Horowitz Invited paper Survey of quantitative feedback theory (QFT) , 1991 .

[25]  Oded Yaniv MIMO QFT using non-diagonal controllers , 1995 .

[26]  I. Horowitz Survey of quantitative feedback theory (QFT) , 2001 .

[27]  Isaac Horowitz,et al.  Practical design of feedback systems with uncertain multivariable plants , 1980 .

[28]  Mario Garcia-Sanz,et al.  Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems , 2005 .

[29]  Kostas Tsakalis,et al.  PID controller tuning by frequency loop-shaping: application to diffusion furnace temperature control , 2000, IEEE Trans. Control. Syst. Technol..

[30]  S. Jayasuriya,et al.  Synthesis of controllers for non-minimum phase and unstable systems using non-sequential MIMO quantitative feedback theory , 2004, Proceedings of the 2004 American Control Conference.

[31]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[32]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[33]  Isaac Horowitz,et al.  Quantitative Feedback Theory (QFT) , 1988, 1988 American Control Conference.

[34]  Murray Lawrence Kerr Robust control of an articulating flexible structure using MIMO QFT , 2004 .

[35]  M. García-Sanz A reduced model of central heating systems as a realistic scenario for analyzing control strategies , 1997 .

[36]  Thomas J. McAvoy,et al.  Connection between relative gain and control loop stability and design , 1981 .

[37]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[38]  I. Horowitz Quantitative synthesis of uncertain multiple input-output feedback system† , 1979 .

[39]  Paul M. J. Van den Hof,et al.  Identification and control - Closed-loop issues , 1995, Autom..

[40]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[41]  Angel Igelmo Ganzo,et al.  Transmisión del calor , 1979 .

[42]  J. M. De Bedout,et al.  Stability conditions for the sequential design of non-diagonal multivariable feedback controllers , 2002 .