Variable DEM generalization using local entropy for terrain representation through scale

ABSTRACT An automated method of variable digital elevation model (DEM) smoothing is presented. Using variably sized kernels to perform filtering, the method is driven by the entropy of local z-values in the DEM, i.e. the amount of information necessary to convey the elevation variety in the neighborhood of each pixel. This paper presents the method in service of low-pass filtering in order to smooth the raster, though other neighborhood-based filters could be implemented as well. When used in smoothing, the method successfully retains detail in areas of higher relief variation and suppresses it in areas of lower variation, thereby retaining more salient features like ridges, peaks, or incised valleys, while diminishing flatter ones. Varying the neighborhood size with which entropy calculations are made allows for filtering through continuous map scale, enabling multi-scale representation. The method also includes a simple correction for smoothed pixels such that their z-value range reflects that of the input DEM, thereby ensuring that subsequent products such as generated contour lines remain within correct ranges. Several illustrations are given of the method's results.

[1]  Bernhard Jenny,et al.  Terrain Sculptor: generalizing terrain models for relief shading , 2010 .

[2]  Cheng Lu,et al.  Intrinsic Images by Entropy Minimization , 2004, ECCV.

[3]  Tinghua Ai,et al.  The drainage network extraction from contour lines for contour line generalization , 2007 .

[4]  Josef Strobl,et al.  What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS , 2001 .

[5]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[6]  G. Hay,et al.  Object-Based Image Analysis , 2008 .

[7]  Paulo Raposo Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation , 2013 .

[8]  Anne Ruas,et al.  Modelling the Overall Process of Generalisation , 2013 .

[9]  Eric Guilbert Multi-level representation of terrain features on a contour map , 2012, GeoInformatica.

[10]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[11]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[12]  L. Sarjakoski Conceptual Models of Generalisation and Multiple Representation , 2007 .

[13]  Robert Weibel,et al.  Modelling the Overall Process of Generalisation , 2007 .

[14]  Barbara P. Buttenfield,et al.  Maximum Entropy Dasymetric Modeling for Demographic Small Area Estimation , 2013 .

[15]  Andrew U. Frank,et al.  Exploring the life of screen objects , 1997 .

[16]  Bernhard Jenny,et al.  Improving the representation of major landforms in analytical relief shading , 2015, Int. J. Geogr. Inf. Sci..

[17]  Jan Terje Bjørke,et al.  Wavelets applied to simplification of digital terrain models , 2003, Int. J. Geogr. Inf. Sci..

[18]  John B. Lindsay,et al.  The practice of DEM stream burning revisited , 2016 .

[19]  Richard A C Cooke,et al.  A microcomputer-based routine for obtaining mean watershed precipitation from point values , 1992 .

[20]  Mark Monmonier,et al.  RASTER-MODE AREA GENERALIZATION FOR LAND USE AND LAND COVER MAPS , 1983 .

[21]  David Brosset,et al.  International Journal of Geographical Information Science Local and Global Spatio-temporal Entropy Indices Based on Distance- Ratios and Co-occurrences Distributions Local and Global Spatio-temporal Entropy Indices Based on Distance-ratios and Co-occurrences Distributions , 2022 .

[22]  Robert Weibel Models and Experiments for Adaptive Computer-Assisted Terrain Generalization , 1992 .

[23]  A. Jon Kimerling,et al.  Hillshading of Terrain Using Layer Tints with Aspect-Variant Luminosity , 2004 .

[24]  Jan Terje Bjørke Exploration of Information Theoretic Arguments for the Limited Amount of Information in a Map , 2012 .

[25]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[26]  T. Blaschke,et al.  Automated classification of landform elements using object-based image analysis , 2006 .

[27]  Ahmed S. Abutaleb,et al.  Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989, Comput. Vis. Graph. Image Process..

[28]  Bernhard Jenny,et al.  Automated Reduction of Visual Complexity in Small-Scale Relief Shading , 2010, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[29]  Jeong Chang Seong,et al.  Assessing Raster Representation Accuracy Using a Scale Factor Model , 2001 .

[30]  A. James Stewart,et al.  A Uniform Sky Illumination Model to Enhance Shading of Terrain and Urban Areas , 2006 .

[31]  Stan Openshaw,et al.  Modifiable Areal Unit Problem , 2008, Encyclopedia of GIS.

[32]  Cécile Duchêne,et al.  Urban Structure Generalization in Multi‐Agent Process by Use of Reactional Agents , 2014, Trans. GIS.

[33]  Keith C. Clarke,et al.  Perceptually Shaded Slope Maps for the Visualization of Digital Surface Models , 2014, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[34]  Haigang Sui,et al.  An Integrated Technique for Automated Generalization of Contour Maps , 2000 .

[35]  Thomas Blaschke,et al.  Object-Based Image Analysis , 2008 .

[36]  Mark Monmonier,et al.  Graphic communication and design in contemporary cartography , 1983 .

[37]  Hannes Isaak Reuter,et al.  An evaluation of void‐filling interpolation methods for SRTM data , 2007, Int. J. Geogr. Inf. Sci..

[38]  Lars Harrie,et al.  The Constraint Method for Solving Spatial Conflicts in Cartographic Generalization , 1999 .

[39]  Jingzhong Li,et al.  A DEM generalization by minor valley branch detection and grid filling , 2010 .

[40]  Andrew U. Frank,et al.  Multiple representations for cartographic objects in a multi-scale tree - An intelligent graphical zoom , 1994, Comput. Graph..

[41]  Mark Monmonier,et al.  A conceptual framework for quantitative and qualitative raster-mode generalization , 1989 .

[42]  P. Kennelly Complexities of designing terrain maps illustrated with horizontal hachures , 2015 .

[43]  William Mackaness,et al.  Abstracting Geographic Information in a Data Rich World: Methodologies and Applications of Map Generalisation , 2014 .

[44]  Márcio Portes de Albuquerque,et al.  Image thresholding using Tsallis entropy , 2004, Pattern Recognit. Lett..

[45]  Tomasz F. Stepinski,et al.  Segmentation-Based Unsupervised Terrain Classification for Generation of Physiographic Maps , 2009, IEEE Geoscience and Remote Sensing Letters.

[46]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[47]  Josef Strobl,et al.  Was ist mit den Pixeln los? Neue Entwicklungen zur Integration von Fernerkundung und GIS , 2001 .

[48]  Jan Terje Bjørke Framework for Entropy-based Map Evaluation , 1996 .

[49]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[50]  Li Zhilin,et al.  Multi-Scale Digital Terrain Modelling and Analysis , 2008 .

[51]  J. Guinan,et al.  Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope , 2007 .

[52]  Tony Lindeberg,et al.  Scale Selection , 2020, Computer Vision, A Reference Guide.

[53]  Dawn Youngblood,et al.  Cartographic Relief Presentation , 2010 .

[54]  A. Jon Kimerling,et al.  Non-Photorealistic Rendering and Terrain Representation , 2006 .

[55]  Jan Terje Bjørke,et al.  Efficient representation of digital terrain models: compression and spatial decorrelation techniques , 2002 .

[56]  P. Yoëli,et al.  The Mechanisation of Analytical Hill Shading , 1967 .

[57]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[58]  Anne Ruas,et al.  The CartACom model: transforming cartographic features into communicating agents for cartographic generalisation , 2012, Int. J. Geogr. Inf. Sci..

[59]  J. Oksanen,et al.  A design of contour generation for topographic maps with adaptive DEM smoothing , 2017 .