Self-assembled organic nanostructures with metallic-like stiffness.

[1]  M. Lynch,et al.  Spectroscopic and Thermal Characterization of 1:2 Sodium Soap/Fatty Acid Acid−Soap Crystals , 1996 .

[2]  A. Carpinteri,et al.  Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. , 2008, Small.

[3]  Ehud Gazit,et al.  Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. , 2007, Chemical Society reviews.

[4]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[5]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[6]  Thomas Scheibel,et al.  Spider silk: from soluble protein to extraordinary fiber. , 2009, Angewandte Chemie.

[7]  D. Lohr,et al.  Single-molecule recognition imaging microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[9]  Sidney R. Cohen,et al.  Nanocompression of individual multilayered polyhedral nanoparticles , 2010, Nanotechnology.

[10]  Thomas Zemb,et al.  Self-assembly of regular hollow icosahedra in salt-free catanionic solutions , 2001, Nature.

[11]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[12]  S. Poon,et al.  Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure , 2008 .

[13]  E. Gazit,et al.  Controlled patterning of aligned self-assembled peptide nanotubes , 2006, Nature nanotechnology.

[14]  David Barlam,et al.  Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. , 2005, Nano letters.

[15]  Surface immobilization and mechanical properties of catanionic hollow faceted polyhedrons. , 2006, The journal of physical chemistry. B.

[16]  Ehud Gazit,et al.  A possible role for π‐stacking in the self‐assembly of amyloid fibrils , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  S. Radford,et al.  Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes , 1997, Nature.

[18]  P. Fratzl,et al.  Switching mechanics with chemistry: a model for the bending stiffness of amphiphilic bilayers with interacting headgroups in crystalline order. , 2006, Physical Review Letters.

[19]  E. Gazit,et al.  Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues , 2005 .

[20]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[21]  I. Banerjee,et al.  Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Shuguang Zhang,et al.  Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Carl Henrik Görbitz,et al.  The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide. , 2006, Chemical communications.

[24]  James M. Tour,et al.  Materials Science: Nanotube composites , 2007, Nature.

[25]  L. Adler-Abramovich,et al.  Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[26]  Meital Reches,et al.  Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides , 2004 .

[27]  Samuel I Stupp,et al.  Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J M Thornton,et al.  Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. , 1991, Journal of molecular biology.

[29]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[30]  M. Heim,et al.  Spinnenseide: vom löslichen Protein zur außergewöhnlichen Faser , 2009 .

[31]  Meital Reches,et al.  Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications , 2006, Physical Biology.

[32]  S. Allen,et al.  Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. , 2007, Langmuir : the ACS journal of surfaces and colloids.