Open Research Online CaSSIS color and multi-angular observations of Martian slope streaks

Slope streaks are albedo features that form frequently on equatorial Martian slopes. Most slope streaks are dark relative to surrounding terrains, a minor fraction is bright, and there are rare transitioning streaks that exhibit a contrast reversal partway downslope. Their formation mechanisms and physical surface properties are not well understood. New observations acquired by the Colour and Stereo Surface Imaging System (CaSSIS) on board ESA's ExoMars Trace Gas Orbiter (TGO) provide insights into slope streaks' surface microstructure, roughness and particle size ranges. Using multiple phase angle observations, we show that dark slope streaks are substantially rougher and possibly more porous than their bright counterparts, which are likely composed of more compact regolith. Color data acquired in the four wavelength bands suggest that dark streaks are spectrally similar to bright streaks but are composed of larger particles. The comparison of our orbital results to the laboratory measurements of Martian regolith analogs indicates that particles within dark slope streaks may be up to a factor of four larger than the granular material of the surrounding terrains. At one study site in Arabia Terra, using complementary imagery from other orbiters, we identify a case where dark slope streaks turned fully bright in a twenty-year period. These and CaSSIS observations suggest that bright slope streaks are old dark slope streaks, likely formed by deposition of dust or decomposition of surface aggregates into smaller particles.

[1]  A. McEwen,et al.  Geometric processing of TGO CaSSIS observations , 2022, Planetary and Space Science.

[2]  A. McEwen,et al.  Active Mars: A Dynamic World , 2021, Journal of geophysical research. Planets.

[3]  Coherent Backscattering , 2021, Principles of Scattering and Transport of Light.

[4]  E. Simioni,et al.  Topographic correction of HiRISE and CaSSIS images: Validation and application to color observations of Martian albedo features , 2021 .

[5]  N. Thomas,et al.  Reflectance study of ice and Mars soil simulant associations – I. H2O ice , 2020, Icarus.

[6]  Manish R. Patel,et al.  OpenMARS: A global record of martian weather from 1999 to 2015 , 2020, Planetary and Space Science.

[7]  E. Simioni,et al.  Topographic correction of HiRISE and CaSSIS images: validation and application to multi-band photometry of Martian recurring slope lineae , 2020 .

[8]  A. McEwen,et al.  Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations , 2020 .

[9]  C. Dundas Geomorphological evidence for a dry dust avalanche origin of slope streaks on Mars , 2020, Nature Geoscience.

[10]  C. Dundas An Aeolian Grainflow Model for Martian Recurring Slope Lineae. , 2020, Icarus.

[11]  R. Jaumann,et al.  Seasonal formation rates of martian slope streaks , 2019, Icarus.

[12]  A. McEwen,et al.  A case study of recurring slope lineae (RSL) at Tivat crater: Implications for RSL origins , 2019, Icarus.

[13]  C. Pilorget,et al.  Observational evidence for a dry dust-wind origin of Mars seasonal dark flows , 2018, Icarus.

[14]  Trent M. Smith,et al.  Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants , 2018, Icarus.

[15]  B. L. Ehlmann,et al.  A Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New Mosaicking Pipeline Using Principles of Non-Destructive Image Editing , 2018 .

[16]  S. Debei,et al.  The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter , 2017 .

[17]  D. Vernani,et al.  On-Ground Performance and Calibration of the ExoMars Trace Gas Orbiter CaSSIS Imager , 2017 .

[18]  A. Bhardwaj,et al.  Martian slope streaks as plausible indicators of transient water activity , 2017, Scientific Reports.

[19]  Jaehun Ahn,et al.  Effects of Fine Particles on Thermal Conductivity of Mixed Silica Sands , 2017 .

[20]  S. V. Gasselt,et al.  Grid-based mapping: a method for rapidly determining the spatial distributions of small features over very large areas , 2017 .

[21]  T. Michaels,et al.  Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars , 2017 .

[22]  J. Head,et al.  Topographic measurements of slope streaks on Mars , 2016 .

[23]  J. Fernando,et al.  Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes , 2016 .

[24]  N. O. Renno,et al.  Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity , 2016, Space Science Reviews.

[25]  Alfred S. McEwen,et al.  Changes in blast zone albedo patterns around new martian impact craters , 2016 .

[26]  A. Gillespie,et al.  Spectral Characteristics of Dark Slope Streaks on Mars: A Global Survey with CRISM , 2016 .

[27]  Nicolas Thomas,et al.  The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues , 2015 .

[28]  John F. Mustard,et al.  Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars , 2014 .

[29]  Adrian J. Brown,et al.  Transient bright "halos" on the South Polar Residual Cap of Mars: Implications for mass-balance , 2014 .

[30]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[31]  Norbert Schorghofer,et al.  Properties of martian slope streak populations , 2013 .

[32]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[33]  M. Vincendon Mars surface phase function constrained by orbital observations , 2012, 1208.4518.

[34]  Norbert Schorghofer,et al.  Sporadic formation of slope streaks on Mars , 2011 .

[35]  N. Thomas,et al.  Photometry and bulk physical properties of Solar System surfaces icy analogs: The Planetary Ice Laboratory at University of Bern , 2011 .

[36]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[37]  Geoffrey A. Landis,et al.  Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .

[38]  R. Arvidson,et al.  Spectral constraints on the composition of low‐albedo slope streaks in the Olympus Mons Aureole , 2010 .

[39]  Johan Warell,et al.  A Hapke model implementation for compositional analysis of VNIR spectra of Mercury , 2010 .

[40]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[41]  J. Head,et al.  Slope streaks on Mars: A new “wet” mechanism , 2009 .

[42]  R. Beyer,et al.  Modification of Martian Slope Streaks , 2009 .

[43]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[44]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[45]  Norbert Schorghofer,et al.  Three decades of slope streak activity on Mars , 2007 .

[46]  R. Beyer,et al.  Mass movement within a slope streak on Mars , 2007 .

[47]  Alfred S. McEwen,et al.  HiRISE observations of slope streaks on Mars , 2007 .

[48]  David A. Paige,et al.  Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions , 2007 .

[49]  Gordon G. Seagrave,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[50]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[51]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[52]  M. Shepard,et al.  A test of the Hapke photometric model , 2007 .

[53]  Ashwin R. Vasavada,et al.  Surface Dust Redistribution on Mars as Observed by the Mars Global Surveyor , 2006 .

[54]  Patrick Pinet,et al.  The role of the wind-transported dust in slope streaks activity: Evidence from the HRSC data , 2006 .

[55]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[56]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[57]  J. Dohm,et al.  Fluid dynamical implications of anastomosing slope streaks on Mars , 2004 .

[58]  Norbert Schorghofer,et al.  A distinct class of avalanche scars on Mars , 2004 .

[59]  M. Kleinhans Sorting in grain flows at the lee side of dunes , 2004 .

[60]  Norbert Schorghofer,et al.  Slope streak formation and dust deposition rates on Mars , 2003 .

[61]  R. Greeley,et al.  Mars: Dust devil track survey in Argyre Planitia and Hellas Basin , 2003 .

[62]  M. Mellon,et al.  Mesoscale linear streaks on Mars: environments of dust entrainment , 2003 .

[63]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[64]  Kenneth S. Edgett,et al.  Mass movement slope streaks imaged by the Mars Orbiter Camera , 2001 .

[65]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[66]  P. Helfenstein,et al.  The Opposition Effect and the Quasi-fractal Structure of Regolith: I. Theory , 2001 .

[67]  Richard V. Morris,et al.  JSC MARS-1: A Martian Soil Simulant , 1998 .

[68]  Joseph Veverka,et al.  The Lunar Opposition Effect: A Test of Alternative Models☆ , 1997 .

[69]  T. R. Allen Theory of reflectance and emittance spectroscopy , 1997 .

[70]  M. Kreslavsky,et al.  Principle of Undulatory Invariance in Photometry of Atmosphereless Celestial Bodies , 1994 .

[71]  Ted L. Roush,et al.  Charon: More than Water Ice? , 1994 .

[72]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[73]  J. Veverka,et al.  Mars: Experimental study of albedo changes caused by dust fallout , 1984 .

[74]  B. Lucchitta,et al.  Dark streaks on talus slopes, Mars , 1984 .

[75]  E. C. Morris,et al.  Aureole deposits of the Martian volcano Olympus Mons , 1982 .

[76]  H. J. Moore,et al.  Physical Properties of the Martian Surface from the Viking 1 Lander: Preliminary Results , 1976, Science.

[77]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  TOPOGRAPHIC CORRECTION OF HiRISE AND CaSSIS IMAGES , 2020 .

[79]  Nicolas Thomas,et al.  Recurring slope lineae in equatorial regions of Mars , 2014 .

[80]  Nathan T. Bridges,et al.  Modification of martian slope streaks by eolian processes , 2010 .

[81]  E. Zubko,et al.  Coherent backscattering in planetary regoliths , 2010 .

[82]  A. McEwen,et al.  Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates , 2010 .

[83]  S. H. Williams DARK TALUS STREAKS ON MARS ARE SIMILAR TO AEOLIAN DARK STREAKS , 2009 .

[84]  A. Kokhanovsky,et al.  Single light scattering and radiative transfer , 2009 .

[85]  Edward A. Guinness,et al.  The Martian Surface: Physical properties of the Martian surface from spectrophotometric observations , 2008 .

[86]  K. Muinonen Goherent Backscattering by Solar System Dust Particles , 1994 .

[87]  P. Geissler Spectrophotometric Mapping of Coprates Quadrangle, Mars , 1992 .