Ultrastretchable and Flexible Copper Interconnect‐Based Smart Patch for Adaptive Thermotherapy

Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration.

[1]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[2]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[3]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[4]  Hideshi Oda,et al.  Effectiveness of Thermotherapy Using a Heat and Steam Generating Sheet for Cartilage in Knee Osteoarthritis , 2014, Journal of physical therapy science.

[5]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Zhigang Suo,et al.  Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography , 2014, Nature Communications.

[7]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[8]  H. Preston‐Thomas,et al.  A Copper Resistance Temperature Scale , 1954 .

[9]  Kinam Kim,et al.  Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. , 2012, Nature nanotechnology.

[10]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[11]  Hubert M. James,et al.  Elastic and Thermoelastic Properties of Rubber like Materials , 1941 .

[12]  B A Wester,et al.  Development and characterization of in vivo flexible electrodes compatible with large tissue displacements , 2009, Journal of neural engineering.

[13]  G. Dobos,et al.  Thermotherapy self-treatment for neck pain relief—A randomized controlled trial , 2012 .

[14]  Muhammad M. Hussain,et al.  Can We Build a Truly High Performance Computer Which is Flexible and Transparent? , 2013, Scientific Reports.

[15]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[16]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[17]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[18]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[19]  J. Zee,et al.  Heating the patient: a promising approach? , 2002 .

[20]  Anne Chandler,et al.  Using heat therapy for pain management. , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[21]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[22]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[23]  G. S. Jeong,et al.  Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer , 2012, Nature Communications.

[24]  Philipp Gutruf,et al.  Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes , 2013 .

[25]  Ralph Spolenak,et al.  Stretchable heterogeneous composites with extreme mechanical gradients , 2012, Nature Communications.

[26]  N. Kotov,et al.  Stretchable nanoparticle conductors with self-organized conductive pathways , 2013, Nature.

[27]  R. Ruoff,et al.  Stretchable and highly sensitive graphene-on-polymer strain sensors , 2012, Scientific Reports.

[28]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[29]  Huisheng Peng,et al.  High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets , 2014, Scientific Reports.

[30]  Zhu Zhu,et al.  Highly conductive and stretchable conductors fabricated from bacterial cellulose , 2012 .

[31]  M. Makin,et al.  Irradiation hardening in copper and nickel , 1960 .

[32]  Chengyi Hou,et al.  A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications , 2013, Scientific Reports.

[33]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[34]  Jan Vanfleteren,et al.  Flexible and stretchable electronics for wearable healthcare , 2014, 2014 44th European Solid State Device Research Conference (ESSDERC).

[35]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[36]  Hossam Haick,et al.  Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. , 2013, ACS applied materials & interfaces.

[37]  W. Su,et al.  Stretchable organic memory: toward learnable and digitized stretchable electronic applications , 2014 .

[38]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[39]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[40]  R. Bernabei,et al.  Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double-blind randomized clinical trial. , 2012, European journal of physical and rehabilitation medicine.

[41]  Jan Vanfleteren,et al.  Arbitrarily shaped 2.5D circuits using stretchable interconnections and embedding in thermoplastic polymers , 2014 .

[42]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[43]  Muhammad Mustafa Hussain,et al.  Transformational silicon electronics. , 2014, ACS nano.

[44]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[45]  Woosik Lee,et al.  Fractal design concepts for stretchable electronics , 2014, Nature Communications.

[46]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[47]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.