Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects

BackgroundPositron-emission tomography and the radioligand [11C](R)-PK11195 have been used for the imaging of the translocator protein (TSPO) and applied to map microglia cells in the brain in neuropsychiatric disorders. [11C](R)-PK11195 binding has been quantified using reference region approaches, with the reference defined anatomically or using unsupervised or supervised clustering algorithms. Kinetic compartment modelling so far has not been presented. In the present test-retest study, we examine the characteristics of [11C](R)-PK11195 binding in detail, using the classical compartment analysis with a metabolite-corrected arterial input function.Methods[11C](R)-PK11195 binding was examined in six control subjects at two separate occasions, 6 weeks apart. Results of one-tissue and two-tissue compartment models (1TCM, 2TCM) were compared using the Akaike criteria and F-statistics. The reproducibility of binding potential (BPND) estimates was evaluated by difference in measurements (error in percent) and intraclass correlation coefficients (ICCs).Results[11C](R)-PK11195 binding could be described by 2TCM which was the preferred model. Measurement error (in percent) indicated good reproducibility in large brain regions (mean error: whole brain 4%, grey matter 5%), but not in smaller subcortical regions (putamen 25%, caudate 55%). The ICC values were moderate to low, highest for the white matter (0.73), whole brain and thalamus (0.57), and cortical grey matter (0.47). Sizeable [11C](R)-PK11195 BPND could be identified throughout the human brain (range 1.11 to 2.21).ConclusionsHigh intra-subject variability of [11C](R)-PK11195 binding limits longitudinal monitoring of TSPO changes. The interpretation of [11C](R)-PK11195 binding by 2TCM suggests that the presence of specific binding to TSPO cannot be excluded at physiological conditions.

[1]  Sunhee C. Lee,et al.  Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain , 2009, Neuropathology and applied neurobiology.

[2]  Philippe Cornu,et al.  Imaging of human brain lesions with an ω3 site radioligand , 1988 .

[3]  R. Butterworth,et al.  Characterization of binding sites for the omega3 receptor ligands [3H]PK11195 and [3H]RO5-4864 in human brain. , 1997, European journal of pharmacology.

[4]  A. Gee,et al.  The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker. , 2003, Nuclear medicine and biology.

[5]  W. Pardridge,et al.  Transport of protein-bound hormones into tissues in vivo. , 1981, Endocrine reviews.

[6]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  B. Lopresti,et al.  The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: From pathology to imaging , 2006, Progress in Neurobiology.

[8]  M. Mintun,et al.  A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography , 1984, Annals of neurology.

[9]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[11]  L. Farde,et al.  Kinetic Analysis of Central [11C]Raclopride Binding to D2-Dopamine Receptors Studied by PET—A Comparison to the Equilibrium Analysis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[13]  G Blomqvist,et al.  Comparison of the Transient Equilibrium and Continuous Infusion Method for Quantitative PET Analysis of [11C]Raclopride Binding , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  C. Halldin,et al.  Quantitative analyses of carbonyl-carbon-11-WAY-100635 binding to central 5-hydroxytryptamine-1A receptors in man. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  J. Bénavidès,et al.  "Peripheral type" benzodiazepine binding sites in rat adrenals: binding studies with [3H]PK 11195 and autoradiographic localization. , 1983, Archives internationales de pharmacodynamie et de therapie.

[16]  C. Dourish,et al.  Silent 5-HT1A receptor antagonists: utility as research tools and therapeutic agents. , 1993, Trends in pharmacological sciences.

[17]  J C Baron,et al.  Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. , 1991, European journal of pharmacology.

[18]  André Syrota,et al.  Synthesis of N‐(11C) methyl, N‐(methyl‐1 propyl), (chloro‐2 phenyl)‐1 isoquinoleine carboxamide‐3 (PK 11195): A new ligand for peripheral benzodiazepine receptors , 1984 .

[19]  Ulrich Amsel,et al.  PET for Drug Development and Evaluation , 1995, Developments in Nuclear Medicine.

[20]  S. Kety The theory and applications of the exchange of inert gas at the lungs and tissues. , 1951, Pharmacological reviews.

[21]  Masahiro Fujita,et al.  Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker , 2010, NeuroImage.

[22]  Christer Halldin,et al.  In-target produced [11C]methane: Increased specific radioactivity. , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[23]  T. Fournier,et al.  Alpha-1-acid glycoprotein. , 2000, Biochimica et biophysica acta.

[24]  H. Budka,et al.  Autoradiography with [ 3 H ] PK 11195 of spinal tract degeneration in amyotrophic lateral sclerosis , 2022 .

[25]  Tuula Tolvanen,et al.  Whole-body distribution and metabolism of [N-methyl-11C](R)-1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with positron emission tomography , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[26]  F. Turkheimer,et al.  Reference and target region modeling of [11C]-(R)-PK11195 brain studies. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  D. Comar,et al.  PET for drug development and evaluation , 1995 .

[28]  C. Halldin,et al.  Quantification of [11C]FLB 457 Binding to Extrastriatal Dopamine Receptors in the Human Brain , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  D J Brooks,et al.  Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  R B Banati,et al.  PK (‘peripheral benzodiazepine’) – binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK 11195 binding to activated microglia , 1997, Journal of neurocytology.

[31]  G. Le Fur,et al.  Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide. I. In vitro studies. , 1983, Life sciences.

[32]  R. Boellaard,et al.  Microglia Activation in Recent-Onset Schizophrenia: A Quantitative (R)-[11C]PK11195 Positron Emission Tomography Study , 2008, Biological Psychiatry.

[33]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  H. Budka,et al.  Autoradiography with [3H]PK11195 of spinal tract degeneration in amyotrophic lateral sclerosis , 2001, Acta Neuropathologica.

[35]  A. Basbaum,et al.  Labelling of peripheral-type benzodiazepine binding sites in human brain with [3H]PK 11195: Anatomical and subcellular distribution , 1987, Brain Research Bulletin.

[36]  S. Meikle,et al.  Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. , 2005, Bioorganic & medicinal chemistry.

[37]  Rudi A. Dierckx,et al.  Neuroinflammation in Schizophrenia-Related Psychosis: A PET Study , 2009, Journal of Nuclear Medicine.

[38]  Ronald Boellaard,et al.  Development of a Tracer Kinetic Plasma Input Model for (R)-[11C]PK11195 Brain Studies , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  H. Wikström,et al.  Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635 , 1997, Brain Research.

[40]  H. Akaike A new look at the statistical model identification , 1974 .

[41]  Tomas Jonsson,et al.  Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis? , 2009, BMC Medical Imaging.

[42]  D E Kuhl,et al.  Compartmental Analysis of [11C]Flumazenil Kinetics for the Estimation of Ligand Transport Rate and Receptor Distribution Using Positron Emission Tomography , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  T. Gasser,et al.  In Vitro Studies , 1992 .

[44]  B. Spännare,et al.  In Vitro Quantitative Autoradiography of [3H]‐L‐Deprenyl and [3H]‐PK 11195 Binding Sites in Human Epileptic Hippocampus , 1992, Epilepsia.

[45]  E. Mackenzie,et al.  Imaging of human brain lesions with an omega 3 site radioligand. , 1988, Annals of neurology.

[46]  G. Sedvall,et al.  Raclopride, a new selective ligand for the dopamine-D2 receptors , 1988, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[47]  Yuji Nagai,et al.  Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: An imaging tool for glial cells in the brain , 2004, Synapse.

[48]  Ramin V. Parsey,et al.  Optimal Metabolite Curve Fitting for Kinetic Modeling of 11C-WAY-100635 , 2007, Journal of Nuclear Medicine.