Type IV pilus structure and bacterial pathogenicity

[1]  B. Albiger,et al.  Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. , 2004, The Journal of infectious diseases.

[2]  P. Jagtap,et al.  A Predator Unmasked: Life Cycle of Bdellovibrio bacteriovorus from a Genomic Perspective , 2004, Science.

[3]  J. Atkinson,et al.  Down-regulation of CD46 by Piliated Neisseria gonorrhoeae , 2003, The Journal of experimental medicine.

[4]  M. Saier,et al.  Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. , 2003, Microbiology.

[5]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[6]  J. Hackett,et al.  The Type IVB Pili of Salmonella enterica Serovar Typhi Bind to the Cystic Fibrosis Transmembrane Conductance Regulator , 2003, Infection and Immunity.

[7]  K. Namba,et al.  Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy , 2003, Nature.

[8]  M. Prevost,et al.  Type IV-Like Pili Formed by the Type II Secreton: Specificity, Composition, Bundling, Polar Localization, and Surface Presentation of Peptides , 2003, Journal of bacteriology.

[9]  C. Belka,et al.  Apoptotic Response of Chang Cells to Infection with Pseudomonas aeruginosa Strains PAK and PAO-I: Molecular Ordering of the Apoptosis Signaling Cascade and Role of Type IV Pili , 2003, Infection and Immunity.

[10]  J. Sturgis,et al.  Type II Protein Secretion in Pseudomonas aeruginosa: the Pseudopilus Is a Multifibrillar and Adhesive Structure , 2003, Journal of bacteriology.

[11]  John A Tainer,et al.  Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. , 2003, Molecular cell.

[12]  K. Jarrell,et al.  Prokaryotic motility structures. , 2003, Microbiology.

[13]  Type-4 bacterial pili: molecular models and their simulated diffraction patterns , 2003 .

[14]  Michael P. Sheetz,et al.  Single pilus motor forces exceed 100 pN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Wolfgang,et al.  Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression , 2002, Molecular microbiology.

[16]  William V Nicholson,et al.  Microtubule structure at 8 A resolution. , 2002, Structure.

[17]  S. Trachtenberg,et al.  The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. , 2002, Journal of molecular biology.

[18]  C. Deal,et al.  Identification of the Pseudomonas aeruginosa 1244 Pilin Glycosylation Site , 2002, Infection and Immunity.

[19]  J T Finch,et al.  Amyloid fibers are water-filled nanotubes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Sasakawa,et al.  Species‐specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle‐forming pili , 2002, Cellular microbiology.

[21]  M. Wolfgang,et al.  Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Lingwood,et al.  Induction of Epithelial Cell Death Including Apoptosis by Enteropathogenic Escherichia coli Expressing Bundle-Forming Pili , 2001, Infection and Immunity.

[23]  B. Albiger,et al.  Soluble Pilin of Neisseria gonorrhoeae Interacts with Human Target Cells and Tissue , 2001, Infection and Immunity.

[24]  C. Sasakawa,et al.  Role of bundle‐forming pilus of enteropathogenic Escherichia coli in host cell adherence and in microcolony development , 2001, Cellular microbiology.

[25]  R A Milligan,et al.  Automated identification of filaments in cryoelectron microscopy images. , 2001, Journal of structural biology.

[26]  L. Otterbein,et al.  The Crystal Structure of Uncomplexed Actin in the ADP State , 2001, Science.

[27]  R. Carlson,et al.  Structural Characterization of the Pseudomonas aeruginosa 1244 Pilin Glycan* , 2001, The Journal of Biological Chemistry.

[28]  B. Sykes,et al.  Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. , 2001, The Journal of biological chemistry.

[29]  A. Blom,et al.  A Novel Interaction Between Type IV Pili of Neisseria gonorrhoeae and the Human Complement Regulator C4b-Binding Protein1 , 2001, The Journal of Immunology.

[30]  M. Sandkvist Type II Secretion and Pathogenesis , 2001, Infection and Immunity.

[31]  Howard C. Berg,et al.  Direct observation of extension and retraction of type IV pili , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Sandkvist Biology of type II secretion , 2001, Molecular microbiology.

[33]  J. Tainer,et al.  The pilus‐induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease , 2001, Cellular microbiology.

[34]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[35]  M. Wolfgang,et al.  Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili , 2000, The EMBO journal.

[36]  D. Kaiser Bacterial motility: How do pili pull? , 2000, Current Biology.

[37]  W. Shi,et al.  Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system , 2000, Current Biology.

[38]  Michael P. Sheetz,et al.  Pilus retraction powers bacterial twitching motility , 2000, Nature.

[39]  R. Read,et al.  Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. , 2000, Journal of molecular biology.

[40]  C. Dobson,et al.  Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. , 2000, Journal of structural biology.

[41]  Xiao-lian Zhang,et al.  Salmonella enterica Serovar Typhi Uses Type IVB Pili To Enter Human Intestinal Epithelial Cells , 2000, Infection and Immunity.

[42]  N. Sauvonnet,et al.  Pilus formation and protein secretion by the same machinery in Escherichia coli , 2000, The EMBO journal.

[43]  Ronald K. Taylor,et al.  Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae , 2000, Molecular microbiology.

[44]  K. Jarrell,et al.  Posttranslational Processing of Methanococcus voltae Preflagellin by Preflagellin Peptidases of M. voltae and Other Methanogens , 2000, Journal of bacteriology.

[45]  L. Serpell,et al.  Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross-b conformation , 2000 .

[46]  R. Robinson,et al.  Domain movement in gelsolin: a calcium-activated switch. , 1999, Science.

[47]  D. Nunn,et al.  Bacterial type II protein export and pilus biogenesis: more than just homologies? , 1999, Trends in cell biology.

[48]  G. Waksman,et al.  Structural basis of chaperone function and pilus biogenesis. , 1999, Science.

[49]  M. Donnenberg,et al.  The type IV bundle‐forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal , 1999, Molecular microbiology.

[50]  D. Maneval,et al.  A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria , 1999, Nature.

[51]  T. Rudel,et al.  Roles of PilC and PilE Proteins in Pilus-Mediated Adherence of Neisseria gonorrhoeae and Neisseria meningitidis to Human Erythrocytes and Endothelial and Epithelial Cells , 1999, Infection and Immunity.

[52]  J. Tainer,et al.  Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology , 1999, Molecular microbiology.

[53]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[54]  T. Hurek,et al.  Type IV pili are involved in plant–microbe and fungus–microbe interactions , 1998, Molecular microbiology.

[55]  G. Schoolnik,et al.  Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. , 1998, Science.

[56]  H. Seifert,et al.  Comparisons between Colony Phase Variation ofNeisseria gonorrhoeae FA1090 and Pilus, Pilin, and S-Pilin Expression , 1998, Infection and Immunity.

[57]  A. Jonsson,et al.  Characterization of the region downstream of the pilus biogenesis gene pilC1 in Neisseria gonorrhoeae. , 1998, Biochimica et biophysica acta.

[58]  G. Dougan,et al.  Role of Intimin and Bundle-Forming Pili in Enteropathogenic Escherichia coli Adhesion to Pediatric Intestinal Tissue In Vitro , 1998, Infection and Immunity.

[59]  K. Jarrell,et al.  Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. , 1998, Journal of molecular evolution.

[60]  J. Tainer,et al.  Consequences of the loss of O‐linked glycosylation of meningococcal type IV pilin on piliation and pilus‐mediated adhesion , 1998, Molecular microbiology.

[61]  M. Levine,et al.  Investigation of the Roles of Toxin-Coregulated Pili and Mannose-Sensitive Hemagglutinin Pili in the Pathogenesis of Vibrio cholerae O139 Infection , 1998, Infection and Immunity.

[62]  D. Kirschner,et al.  Analysis of x-ray diffraction patterns from amyloid of biopsied vitreous humor and kidney of transthyretin (TTR) Met30 familial amyloidotic polyneuropathy (FAP) patients: axially arrayed TTR monomers constitute the protofilament. , 1998, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[63]  J. Atkinson,et al.  Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria , 1997, Molecular microbiology.

[64]  J. Tainer,et al.  Type-4 pilus-structure: outside to inside and top to bottom--a minireview. , 1997, Gene.

[65]  M. Fussenegger,et al.  Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. , 1997, Gene.

[66]  B. Finlay,et al.  Interactions between enteropathogenic Escherichia coli and host epithelial cells. , 1997, Trends in microbiology.

[67]  M. Donnenberg,et al.  DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli , 1996, Molecular microbiology.

[68]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[69]  J. Tainer,et al.  Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies , 1996, Infection and immunity.

[70]  M. Koomey,et al.  The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae , 1995, Molecular microbiology.

[71]  John A. Tainer,et al.  Structure of the fibre-forming protein pilin at 2.6 Å resolution , 1995, Nature.

[72]  R. Hodges,et al.  Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. , 1995, Biochemistry.

[73]  N. Freitag,et al.  Identification and characterization of pilG, a highly conserved pilus‐assembly gene in pathogenic Neisseria , 1995, Molecular microbiology.

[74]  N. Freitag,et al.  Characterization of the pilF—pilD pilus‐assembly locus of Neisseria gonorrhoeae , 1995, Molecular microbiology.

[75]  Koichiro Yamamoto,et al.  Sequencing of the gene encoding the major pilin of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli and evidence that CFA/III is related to type IV pili , 1995, Infection and immunity.

[76]  T. Rudel,et al.  Neisseria PilC protein identified as type-4 pilus tip-located adhesin , 1995, Nature.

[77]  R. Hodges,et al.  Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. , 1995, Biomedical peptides, proteins & nucleic acids : structure, synthesis & biological activity.

[78]  R. Irvin,et al.  Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice , 1994, Infection and immunity.

[79]  Structure of a foreign peptide displayed on the surface of bacteriophage M13. , 1994, Journal of molecular biology.

[80]  J. Pepose,et al.  Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue , 1994 .

[81]  J. Lowy,et al.  Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Levine,et al.  Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli , 1994, Molecular microbiology.

[83]  R. Hodges,et al.  The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip‐associated event involving the C‐terminal region of the structural pilin subunit , 1994, Molecular microbiology.

[84]  L. Brown,et al.  Antigenic competition in a multivalent foot rot vaccine. , 1994, Vaccine.

[85]  C. Schutt,et al.  The structure of crystalline profilin–β-actin , 1993, Nature.

[86]  H. Mannherz,et al.  Structure of gelsolin segment 1-actin complex and the mechanism of filament severing , 1993, Nature.

[87]  D A Winkelmann,et al.  Three-dimensional structure of myosin subfragment-1: a molecular motor. , 1993, Science.

[88]  B. Pasloske,et al.  Mutations in the fifth-position glutamate in Pseudomonas aeruginosa pilin affect the transmethylation of the N-terminal phenylalanine. , 1993, Canadian journal of microbiology.

[89]  A. Progulske-Fox,et al.  Sequence divergence in two tandemly located pilin genes of Eikenella corrodens , 1993, Infection and immunity.

[90]  T. Rudel,et al.  Interaction of two variable proteins (PilE and PilC) required for pilus‐mediated adherence of Neisseria gonorrhoeae to human epithelial cells , 1992, Molecular microbiology.

[91]  J. Nataro,et al.  A plasmid‐encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence , 1992, Molecular microbiology.

[92]  J. Tennent,et al.  The protective efficacy of pili from different strains of Moraxella bovis within the same serogroup against infectious bovine keratoconjunctivitis. , 1992, Veterinary microbiology.

[93]  G. Schoolnik,et al.  An inducible bundle-forming pilus of enteropathogenic Escherichia coli. , 1991, Science.

[94]  G. Schoolnik,et al.  Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins , 1991, The Journal of experimental medicine.

[95]  F. Rozsa,et al.  The type 4 pilin of Moraxella nonliquefaciens exhibits unique similarities with the pilins of Neisseria gonorrhoeae and Dichelobacter (Bacteroides) nodosus. , 1991, Journal of general microbiology.

[96]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[97]  J. Sadoff,et al.  Efficacy trial of a parenteral gonococcal pilus vaccine in men. , 1991, Vaccine.

[98]  S. Normark,et al.  Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. , 1991, The EMBO journal.

[99]  R. Ramphal,et al.  Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units , 1991, Infection and immunity.

[100]  S. Lory,et al.  Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. , 1991, The Journal of biological chemistry.

[101]  J. Seyer,et al.  Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated pilus , 1991, Infection and immunity.

[102]  J. Atkinson,et al.  Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. , 1991, Annual review of immunology.

[103]  R. Taylor,et al.  Vibrio cholerae O395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins , 1990, Infection and immunity.

[104]  R. Hodges,et al.  Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili , 1990, Infection and immunity.

[105]  M. Ogierman,et al.  Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. , 1989, Gene.

[106]  R. Irvin,et al.  Human buccal epithelial cell receptors of Pseudomonas aeruginosa: identification of glycoproteins with pilus binding activity. , 1989, Canadian journal of microbiology.

[107]  R. Hodges,et al.  Mapping the surface regions of Pseudomonas aeruginosa PAK pilin: the importance of the C‐terminal region for adherence to human buccal epithelial cells , 1989, Molecular microbiology.

[108]  D. Scraba,et al.  Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits , 1989, Journal of bacteriology.

[109]  M. Levine,et al.  Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans , 1988, The Journal of experimental medicine.

[110]  J. Saunders,et al.  Nucleotide sequence of the structural gene for class I pilin from Neisseria meningitidis: homologies with the pilE locus of Neisseria gonorrhoeae , 1988, Molecular microbiology.

[111]  D. Roberts,et al.  Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[112]  R. Hodges,et al.  Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells , 1988, Infection and immunity.

[113]  D. Roberts,et al.  Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). , 1988, Archives of biochemistry and biophysics.

[114]  H. Schwarz,et al.  Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[115]  M. Levine,et al.  Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. , 1987, The Pediatric infectious disease journal.

[116]  J. Mattick,et al.  Protection of sheep against footrot with a recombinant DNA-based fimbrial vaccine. , 1987, Veterinary microbiology.

[117]  R. E. Webster,et al.  Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli , 1987, Journal of bacteriology.

[118]  K. Robbins,et al.  Gene conversion variations generate structurally distinct pilin polypeptides in Neisseria gonorrhoeae , 1987, The Journal of experimental medicine.

[119]  S. Lory,et al.  Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. , 1986, The Journal of biological chemistry.

[120]  D. Marvin,et al.  Structure of F-pili: reassessment of the symmetry. , 1986, Journal of molecular biology.

[121]  M. Levine,et al.  The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. , 1985, The Journal of infectious diseases.

[122]  W. Kabsch,et al.  Three‐dimensional structure of the complex of actin and DNase I at 4.5 A resolution. , 1985, The EMBO journal.

[123]  G. Schoolnik,et al.  Cloning and sequencing of a Moraxella bovis pilin gene , 1985, Journal of bacteriology.

[124]  M. So,et al.  Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae , 1985, Nature.

[125]  T. Meyer,et al.  Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation , 1985, Cell.

[126]  T. Meyer,et al.  Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[127]  L. Trabulsi,et al.  Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells , 1984, Infection and immunity.

[128]  T. Meyer,et al.  Opacity determinants of Neisseria gonorrhoeae: Gene expression and chromosomal linkage to the gonococcal pilus gene , 1984, Cell.

[129]  M. Virji,et al.  The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. , 1984, Journal of General Microbiology.

[130]  R. Ramphal,et al.  Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium , 1984, Infection and immunity.

[131]  Maximum-entropy calculation of the electron density at 4 A resolution of Pf1 filamentous bacteriophage. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[132]  C. Kay,et al.  Spectral properties of three quaternary arrangements of Pseudomonas pilin. , 1983, Biochemistry.

[133]  J. Henrichsen Twitching motility. , 1983, Annual review of microbiology.

[134]  L. A. Day,et al.  Structure of the filamentous bacteriophage, Pf3, by X-ray fiber diffraction. , 1982, Journal of molecular biology.

[135]  C. Kay,et al.  Dissociation and characterization of pilin isolated from Pseudomonas aeruginosa strains PAK and PAO. , 1982, Canadian journal of biochemistry.

[136]  D. Marvin,et al.  Structure of polar pili from Pseudomonas aeruginosa strains K and O. , 1981, Journal of molecular biology.

[137]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[138]  J. A. Bass,et al.  Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells , 1980, Infection and immunity.

[139]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[140]  D. Kaiser,et al.  Social gliding is correlated with the presence of pili in Myxococcus xanthus. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[141]  H. Lipson,et al.  The development of x-ray analysis , 1975 .

[142]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[143]  C. Novotny,et al.  Retraction of F Pili , 1974, Journal of bacteriology.

[144]  D. E. Bradley A pilus-dependent Pseudomonas aeruginosa bacteriophage with a long noncontractile tail. , 1973, Virology.

[145]  A. Jacobson Role of F Pili in the Penetration of Bacteriophage fl , 1972, Journal of virology.

[146]  D. S. Kellogg,et al.  Neisseria gonorrhoeae II. Colonial Variation and Pathogenicity During 35 Months In Vitro , 1968, Journal of bacteriology.

[147]  Douglas S. Kellogg,et al.  NEISSERIA GONORRHOEAE I , 1963, Journal of bacteriology.

[148]  R. Franklin,et al.  Molecular Configuration in Sodium Thymonucleate , 1953, Nature.

[149]  L. Pauling,et al.  Two hydrogen-bonded spiral configurations of the polypeptide chain , 1950 .