High-quality cardiac image dynamic visualization with feature enhancement and virtual surgical tool inclusion

Traditional approaches for rendering segmented volumetric data sets usually deliver unsatisfactory results, such as insufficient frame rate, low image quality, and intermixing artifacts. In this paper, we introduce a novel “color encoding” technique, based on graphics processing unit (GPU) accelerated raycasting and post-color attenuated classification, to address this problem. The result is an algorithm that can generate artifact-free dynamic volumetric images in real time. Next, we present a pre-integrated volume shading algorithm to reduce graphics memory requirements and computational cost when compared to traditional shading methods. We also present a normal-adjustment technique to improve image quality at clipped planes. Furthermore, we propose a new algorithm for color and depth texture indexing that permits virtual solid objects, such as surgical tools, to be manipulated within the dynamically rendered volumetric cardiac images in real time. Finally, all these techniques are combined within an environment that permits real-time visualization, enhancement, and manipulation of dynamic cardiac data sets.

[1]  Douglas L. Jones,et al.  An augmented reality environment for image-guidance of off-pump mitral valve implantation , 2007, SPIE Medical Imaging.

[2]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998 .

[3]  Terry M. Peters,et al.  Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries , 2004, Medical Image Anal..

[4]  O. Ecabert,et al.  Visualizing the beating heart: interactive direct volume rendering of high-resolution CT time series using standard PC hardware , 2006, SPIE Medical Imaging.

[5]  Andrew D. Wiles,et al.  Virtual reality-enhanced ultrasound guidance: A novel technique for intracardiac interventions , 2008, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[6]  Bernard Albat,et al.  Early postoperative assessment of coronary artery bypass graft patency and anatomy: value of contrast-enhanced 16-MDCT with retrospectively ECG-gated reconstructions. , 2006, AJR. American journal of roentgenology.

[7]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[8]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Qi Zhang,et al.  GPU-BASED IMAGE MANIPULATION AND ENHANCEMENT TECHNIQUES FOR DYNAMIC VOLUMETRIC MEDICAL IMAGE VISUALIZATION , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[10]  Markus Hadwiger,et al.  GPU-Based High-Quality Volume Rendering For Virtual Environments , 2006 .

[11]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[12]  Allen Van Gelder,et al.  Direct volume rendering with shading via three-dimensional textures , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[13]  Elliot K Fishman,et al.  Surgically corrected congenital heart disease: utility of 64-MDCT. , 2008, AJR. American journal of roentgenology.

[14]  Ai-Hsien Li,et al.  CT of two hearts beating in one chest. , 2008, AJR. American journal of roentgenology.

[15]  W. A. Hanson,et al.  Interactive 3D segmentation of MRI and CT volumes using morphological operations. , 1992, Journal of computer assisted tomography.

[16]  Rakesh Mullick,et al.  Volume rendering segmented data using 3D textures: a practical approach for intra-operative visualization , 2006, SPIE Medical Imaging.

[17]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[18]  Qi Zhang,et al.  Rapid Voxel Classification Methodology for Interactive 3D Medical Image Visualization , 2007, MICCAI.

[19]  Peter Hastreiter,et al.  Smooth volume rendering of labeled medical data on consumer graphics hardware , 2005, SPIE Medical Imaging.

[20]  Kwan-Liu Ma,et al.  High-quality lighting and efficient pre-integration for volume rendering , 2004, VISSYM'04.

[21]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[22]  Andreas Pommert,et al.  3D-visualization of tomographic volume data using the generalized voxel-model , 1989, VVS.

[23]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[24]  Daniel T Boll,et al.  Synergy of MDCT and cine MRI for the evaluation of cardiac motility. , 2006, AJR. American journal of roentgenology.

[25]  Sylvain Lefebvre,et al.  Octree Textures on the GPU , 2005 .

[26]  Dieter Schmalstieg,et al.  Spatial Analysis Tools for Virtual Reality-based Surgical Planning , 2006, 3D User Interfaces (3DUI'06).

[27]  Stefan Wolfsberger,et al.  Interactive 3 D Techniques for Computer Aided Diagnosis and Surgery Simulation Tools , 2004 .

[28]  Marcel Breeuwer,et al.  CoViCAD: Comprehensive Visualization of Coronary Artery Disease , 2007, IEEE Transactions on Visualization and Computer Graphics.

[29]  Terry M. Peters TOPICAL REVIEW: Image-guidance for surgical procedures , 2006 .

[30]  David Levin,et al.  Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware. , 2005, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[31]  Yingcai Wu,et al.  Interactive Transfer Function Design Based on Editing Direct Volume Rendered Images , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  N. Mochizuki,et al.  A real-time volume rendering of left ventricular activity in human heart , 2008, 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing.

[33]  Stephen R. Aylward,et al.  Volume rendering of segmented image objects , 2002, IEEE Transactions on Medical Imaging.

[34]  Christof Rezk Salama Volumenvisualisierung auf handelsüblicher Grafik-Hardware (Volume Rendering Techniques for General Purpose Graphics Hardware) , 2005 .

[35]  Gordon Clapworthy,et al.  Volumetric texture synthesis for non-photorealistic volume rendering of medical data , 2005, The Visual Computer.

[36]  Richard M. Satava,et al.  Medical applications of virtual reality , 1995, Journal of Medical Systems.

[37]  P. V. van Ooijen,et al.  Coronary artery imaging with multidetector CT: visualization issues. , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[38]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[39]  Markus Hadwiger,et al.  High-quality two-level volume rendering of segmented data sets on consumer graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[40]  T. Peters Image-guidance for surgical procedures , 2006, Physics in medicine and biology.

[41]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[42]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[43]  Qi Zhang,et al.  High-quality anatomical structure enhancement for cardiac image dynamic volume rendering , 2008, SPIE Medical Imaging.

[44]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[45]  Qi Zhang,et al.  Real-time visualization of 4D cardiac MR images using graphics processing units , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[46]  Terry M. Peters,et al.  Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU , 2007, SPIE Medical Imaging.

[47]  Arie E. Kaufman,et al.  Proceedings of the 1994 Symposium on Volume Visualization, VVS 1994, Washington, DC, USA, October 17-18, 1994 , 1995, VVS.

[48]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[49]  Leo P Lawler,et al.  Four-dimensional imaging of the heart based on near-isotropic MDCT data sets. , 2005, AJR. American journal of roentgenology.

[50]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[51]  Joseph J. LaViola,et al.  Immersive VR for Scientific Visualization: A Progress Report , 2000, IEEE Computer Graphics and Applications.