GaN HEMT high efficiency power amplifiers for 4G/5G mobile communication base stations

In this paper, the key technology development on the base station power amplifiers (PA) for 4th generation (4G) and 5th generation (5G) of mobile communication systems is discussed. In considering the major requirements from 4G/5G systems of the spectrum extension, smaller size and lower power consumption, GaN HEMT device is the most promising technology because of its potential of broad band and high power density based on its wide band gap properties and the proven ability to realize the energy efficient amplifiers. The paper tries to provide the future requirements and expectation on GaN or the wide band gap compound semiconductor devices assuming its applications for the latest amplifier technologies which are the advanced Doherty PA, the Outphasing/Linear-amplification-using-Nonlinear-Components (LINC) PA and the switch-mode PA with the achieved performances and perspectives.

[1]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[2]  W. Heinrich,et al.  Digital doherty transmitter with envelope ΔΣ modulated class-D GaN power amplifier for 800 MHz band , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[3]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[4]  Mark P. van der Heijden,et al.  A 19W high-efficiency wide-band CMOS-GaN class-E Chireix RF outphasing power amplifier , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[5]  A. Grebennikov,et al.  A Dual-Band Parallel Doherty Power Amplifier for Wireless Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[6]  Renato Negra,et al.  Design of a concurrent quad-band GaN-HEMT Doherty power amplifier for wireless applications , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[7]  R. S. Pengelly,et al.  A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Shintaro Watanabe,et al.  A broadband Doherty power amplifier without a quarter-wave impedance inverting network , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[9]  Mark P. van der Heijden,et al.  A 70W package-integrated class-E Chireix outphasing RF power amplifier , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[10]  F. van Rijs,et al.  A 700-W peak ultra-wideband broadcast Doherty amplifier , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[11]  Frederick H. Raab,et al.  Efficiency of Outphasing RF Power-Amplifier Systems , 1985, IEEE Trans. Commun..

[12]  Xuan Anh Nghiem,et al.  Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[13]  Andreas Wentzel,et al.  Optimized coding scheme for class-S amplifiers , 2011, 2011 41st European Microwave Conference.

[14]  P. M. Asbeck,et al.  Deeply-Scaled E/D-Mode GaN-HEMTs for Sub-mm-Wave Amplifiers and Mixed-Signal Applications , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[15]  Patrick Roblin,et al.  Concurrent Linearization: The State of the Art for Modeling and Linearization of Multiband Power Amplifiers , 2013, IEEE Microwave Magazine.

[16]  M. Tanio,et al.  A linear and efficient 1-bit digital transmitter with envelope delta-sigma modulation for 700MHz LTE , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[17]  Toru Maniwa,et al.  Efficiency improvement of transmitter for mobile phone base station using outphasing amplifier , 2013 .

[18]  Tomoya Kaneko,et al.  A Total Bandwidth Expanded Dual-Band GaN Doherty PA toward the LTE-A Carrier Aggregation Application , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[19]  W. H. Doherty A New High Efficiency Power Amplifier for Modulated Waves , 1936 .