Hamilton and Jacobi Meet Again: Quaternions and the Eigenvalue Problem

The algebra isomorphism between $\cal{M}_{4}(\cal{R})$ and $\cal{H} \otimes \cal{H}$, where $\cal{H}$ is the algebra of quaternions, has unexpected computational payoff: it helps construct an orthogonal similarity that $2 \times 2$ block-diagonalizes a $4\times 4$ symmetric matrix. Replacing plane rotations with these more powerful $4 \times 4$ rotations leads to a quaternion-Jacobi method in which the "weight" of four elements (in a $2 \times 2$ block) is transferred all at once onto the diagonal. Quadratic convergence sets in sooner, and the new method requires at least one fewer sweep than plane-Jacobi methods. An analogue of the sorting angle for plane rotations is developed for these $4 \times 4$ rotations.

[1]  Roy Mathias Accurate Eigensystem Computations by Jacobi Methods , 1995, SIAM J. Matrix Anal. Appl..

[2]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[3]  M. Paardekooper,et al.  An eigenvalue algorithm for skew-symmetric matrices , 1971 .

[4]  P. Henrici On the Speed of Convergence of Cyclic and Quasicyclic Jacobi Methods for Computing Eigenvalues of Hermitian Matrices , 1958 .

[5]  Charles R. Johnson,et al.  Linear transformations on that preserve the Ky Fan k-norm and a remarkable special case when (n k) = (4, 2) , 1988 .

[6]  Patricia J. Eberlein,et al.  On the Schur Decomposition of a Matrix for Parallel Computation , 1985, IEEE Transactions on Computers.

[7]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[8]  Ivars Peterson,et al.  The Mathematical Tourist , 1988 .

[9]  H. S. M. Coxeter Quaternions and Reflections (Postscript) , 1946 .

[10]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[11]  R. Brent,et al.  The Solution of Singular-Value and Symmetric Eigenvalue Problems on Multiprocessor Arrays , 1985 .

[12]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[13]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[14]  K. Maurin Representations of Compact Lie Groups , 1997 .

[15]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[16]  C. Jacobi Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .

[17]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[18]  Arthur Cayley Collected Mathematical Papers , 1988 .

[19]  H. Coxeter Quaternions and Reflections , 1946 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  Radoslav Dimitrić,et al.  The mathematical tourist , 1991 .

[22]  Haesun Park,et al.  Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures , 1990, J. Parallel Distributed Comput..

[23]  Thomas L. Hankins,et al.  Sir William Rowan Hamilton , 1980 .

[24]  Derek Hacon,et al.  Jacobi's method for skew-symmetric matrices , 1993 .

[25]  Walter F. Mascarenhas,et al.  On the Convergence of the Jacobi Method for Arbitrary Orderings , 1995, SIAM J. Matrix Anal. Appl..

[26]  A. Bojanczyk,et al.  Computation of the Euler angles of a symmetric 3X3 matrix , 1991 .

[27]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .