Segmentation models diversity for object proposals

We present an efficient segmentation proposal method.Starting from bounding-boxes we obtain precise segmentation masks.We diversify segmentation strategies using class agnostics features.We demonstrate how segmentation strategy diversification greatly boosts accuracy. In this paper we present a segmentation proposal method which employs a box-hypotheses generation step followed by a lightweight segmentation strategy. Inspired by interactive segmentation, for each automatically placed bounding-box we compute a precise segmentation mask. We introduce diversity in segmentation strategies enhancing a generic model performance exploiting class-independent regional appearance features. Foreground probability scores are learned from groups of objects with peculiar characteristics to specialize segmentation models. We demonstrate results comparable to the state-of-the-art on PASCAL VOC 2012 and a further improvement by merging our proposals with those of a recent solution. The ability to generalize to unseen object categories is demonstrated on Microsoft COCO 2014.

[1]  Cristian Sminchisescu,et al.  Semantic Segmentation with Second-Order Pooling , 2012, ECCV.

[2]  Vladlen Koltun,et al.  Geodesic Object Proposals , 2014, ECCV.

[3]  Gregory Shakhnarovich,et al.  Image Segmentation by Cascaded Region Agglomeration , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Ben Taskar,et al.  SCALPEL: Segmentation Cascades with Localized Priors and Efficient Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Kristen Grauman,et al.  Shape Sharing for Object Segmentation , 2012, ECCV.

[6]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[7]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[8]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2019, Computational Visual Media.

[9]  Cristian Sminchisescu,et al.  Object Recognition by Sequential Figure-Ground Ranking , 2011, International Journal of Computer Vision.

[10]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[11]  Alexei A. Efros,et al.  Improving Spatial Support for Objects via Multiple Segmentations , 2007, BMVC.

[12]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Derek Hoiem,et al.  Learning to localize detected objects , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Yizhou Yu,et al.  Learning image-specific parameters for interactive segmentation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jian Dong,et al.  Semantic Segmentation without Annotating Segments , 2013, 2013 IEEE International Conference on Computer Vision.

[18]  Kristen Grauman,et al.  Predicting Sufficient Annotation Strength for Interactive Foreground Segmentation , 2013, 2013 IEEE International Conference on Computer Vision.

[19]  Arnold W. M. Smeulders,et al.  Real-Time Visual Concept Classification , 2010, IEEE Transactions on Multimedia.

[20]  C. Lawrence Zitnick,et al.  Structured Forests for Fast Edge Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[21]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[22]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[23]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  James M. Rehg,et al.  RIGOR: Reusing Inference in Graph Cuts for Generating Object Regions , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[27]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.