Tableaux and insertion schemes for spinor representations of the orthogonal Lie algebraso(2r + 1, C)

A new set of tableaux is presented to index the weights of the irreducible spinor representations of the orthogonal Lie algebraso(2r + 1, ℂ). These tableaux are used to develop insertion schemes which combinatorially describe the decomposition of the tensor product of the spin representation with an irreducible representation ofso(2r + 1, ℂ).

[1]  H. Weyl,et al.  Spinors in n Dimensions , 1935 .

[2]  Robert A. Proctor,et al.  Equivalence of the combinatorial and the classical definitions of schur functions , 1989, J. Comb. Theory, Ser. A.

[3]  R. King,et al.  Reduced determinantal forms for characters of the classical Lie groups , 1979 .

[4]  Allan Berele,et al.  A schensted-type correspondence for the symplectic group , 1986, J. Comb. Theory, Ser. A.

[5]  Glânffrwd P Thomas On Schensted's construction and the multiplication of schur functions , 1978 .

[6]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[7]  John R. Stembridge,et al.  Rational tableaux and the tensor algebra of gln , 1987, J. Comb. Theory, Ser. A.

[8]  B. G. Wybourne,et al.  Kronecker products for compact semisimple Lie groups , 1983 .

[9]  Ronald C. King,et al.  Standard Young tableaux and weight multiplicities of the classical Lie groups , 1983 .

[10]  Sheila Sundaram,et al.  Orthogonal tableaux and an insertion algorithm for SO(2n + 1) , 1990, J. Comb. Theory, Ser. A.

[11]  Sheila Sundaram,et al.  The Cauchy identity for Sp(2n) , 1990, J. Comb. Theory, Ser. A.

[12]  Explicit decompositions of some tensor products of modules for simple complex lie algbras , 1987 .

[13]  A Schensted Algorithm Which Models Tensor Representations of the Orthogonal Group , 1990, Canadian Journal of Mathematics.

[14]  R. King Weight multiplicities for the classical groups , 1976 .

[15]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .