Recent contributions to linear semi-infinite optimization

This paper reviews the state-of-the-art in the theory of deterministic and uncertain linear semi-infinite optimization, presents some numerical approaches to this type of problems, and describes a selection of recent applications in a variety of fields. Extensions to related optimization areas, as convex semi-infinite optimization, linear infinite optimization, and multi-objective linear semi-infinite optimization, are also commented.

[1]  E. Vercher Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming , 2008 .

[2]  A. Daniilidis,et al.  Stability in Linear Optimization Under Perturbations of the Left-Hand Side Coefficients , 2015 .

[3]  Sven-Åke Gustafson,et al.  On the Computational Solution of a Class of Generalized Moment Problems , 1970 .

[4]  Swarup Roy,et al.  Big data analytics in bioinformatics: architectures, techniques, tools and issues , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[5]  Alberto Ferrer,et al.  A comparative note on the relaxation algorithms for the linear semi-infinite feasibility problem , 2017, Ann. Oper. Res..

[6]  Nikolaos V. Sahinidis,et al.  A combined first-principles and data-driven approach to model building , 2015, Comput. Chem. Eng..

[7]  Marco A. López,et al.  Locally Farkas–Minkowski Systems in Convex Semi-Infinite Programming , 1999 .

[8]  Kenneth O. Kortanek,et al.  Numerical treatment of a class of semi‐infinite programming problems , 1973 .

[9]  Bruno Betrò,et al.  An accelerated central cutting plane algorithm for linear semi-infinite programming , 2004, Math. Program..

[10]  Miguel A. Goberna,et al.  Constraint qualifications in linear vector semi-infinite optimization , 2013, Eur. J. Oper. Res..

[11]  Miguel A. Goberna,et al.  Post-Optimal Analysis in Linear Semi-Infinite Optimization , 2014 .

[12]  Guangming Zeng,et al.  Identification of Optimal Urban Solid Waste Flow Schemes under Impacts of Energy Prices , 2008 .

[13]  M. A. Goberna,et al.  On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients , 2011 .

[14]  Miguel A. Goberna,et al.  Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constraints , 2016, Oper. Res. Lett..

[15]  N. D. Yen,et al.  Duality gap function in infinite dimensional linear programming , 2016 .

[16]  Olvi L. Mangasarian,et al.  Nonlinear Knowledge-Based Classification , 2008, IEEE Transactions on Neural Networks.

[17]  M. Volle,et al.  Convex Inequalities Without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization , 2010 .

[18]  Bruno Betrò,et al.  Numerical treatment of Bayesian robustness problems , 2009, Int. J. Approx. Reason..

[19]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[20]  Amitabh Basu,et al.  Strong duality and sensitivity analysis in semi-infinite linear programming , 2015, Math. Program..

[21]  R. Henrion,et al.  Problem-based optimal scenario generation and reduction in stochastic programming , 2018, Math. Program..

[22]  Ken O. Kortanek,et al.  On the 1962–1972 Decade of Semi-Infinite Programming: A Subjective View , 2001 .

[23]  Yanqun Liu New Constraint Qualification and Optimality for Linear Semi-Infinite Programming , 2016 .

[24]  Li He,et al.  ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty , 2008 .

[25]  András Prékopa,et al.  Inequalities for discrete higher order convex functions , 2009 .

[26]  V. V. D. de Serio,et al.  Stability of the primal-dual partition in linear semi-infinite programming , 2012 .

[27]  Chong Li,et al.  Constraint Qualifications for Convex Inequality Systems with Applications in Constrained Optimization , 2008, SIAM J. Optim..

[28]  Marco A. López,et al.  Penalty and Smoothing Methods for Convex Semi-Infinite Programming , 2009, Math. Oper. Res..

[29]  B. Betrò Bayesian Robustness: Theory and Computation , 2008 .

[30]  F. Javier Toledo-Moreo,et al.  Calmness modulus of fully perturbed linear programs , 2016, Math. Program..

[31]  Alejandro Toriello,et al.  Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes , 2016, SIAM J. Optim..

[32]  Moshe Dror,et al.  Stochastic programming for decentralized newsvendor with transshipment , 2012 .

[33]  Marco A. López,et al.  Calmness Modulus of Linear Semi-infinite Programs , 2013, SIAM J. Optim..

[34]  W W Cooper,et al.  DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Hu,et al.  A Projection Method for Solving Infinite Systems of Linear Inequalities , 1994 .

[36]  Marco A. López,et al.  Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach , 2007 .

[37]  Vera Roshchina,et al.  Outer limits of subdifferentials for min–max type functions , 2017, 1701.02852.

[38]  Mirjam Dür,et al.  Genericity Results in Linear Conic Programming - A Tour d'Horizon , 2017, Math. Oper. Res..

[39]  Vaithilingam Jeyakumar,et al.  A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty , 2011, Oper. Res. Lett..

[40]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[41]  M. Goberna,et al.  Topological stability of linear semi-infinite inequality systems , 1996 .

[42]  Miguel A. Goberna,et al.  Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..

[43]  F. Javier Toledo-Moreo,et al.  Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..

[44]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[45]  Marco A. López,et al.  Best Approximate Solutions of Inconsistent Linear Inequality Systems , 2018 .

[46]  M. A. Goberna,et al.  Optimal value function in semi-infinite programming , 1988 .

[47]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[48]  Miguel A. Goberna,et al.  Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions , 2010, Math. Oper. Res..

[49]  Yafeng Yin,et al.  Robust congestion pricing under boundedly rational user equilibrium , 2010 .

[50]  Shunsuke Hayashi,et al.  Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation , 2016, Optim. Methods Softw..

[51]  Marco A. López,et al.  Robust linear semi-infinite programming duality under uncertainty , 2013, Math. Program..

[52]  Alberto Ferrer,et al.  Comparative study of RPSALG algorithm for convex semi-infinite programming , 2015, Comput. Optim. Appl..

[53]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[54]  Gerhard-Wilhelm Weber,et al.  Infinite kernel learning via infinite and semi-infinite programming , 2010, Optim. Methods Softw..

[55]  Chong Li,et al.  Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming , 2010 .

[56]  R. J. Duffin,et al.  An Infinite Linear Program with a Duality Gap , 1965 .

[57]  M. Ding,et al.  A ladder method for linear semi-infinite programming , 2013 .

[58]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[59]  M. D. Fajardo,et al.  Linear representations and quasipolyhedrality of a finite-valued convex function , 2008 .

[60]  Diego Klabjan,et al.  An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces , 2007, Math. Oper. Res..

[61]  Juan Enrique Martínez-Legaz,et al.  γ-Active Constraints in Convex Semi-Infinite Programming , 2014 .

[62]  Marco A. López,et al.  Simplex-Like Trajectories on Quasi-Polyhedral Sets , 2001, Math. Oper. Res..

[63]  Qinghong Zhang,et al.  Extending the mixed algebraic-analysis Fourier–Motzkin elimination method for classifying linear semi-infinite programmes , 2016 .

[64]  L. Qi,et al.  On solving a class of linear semi-infinite programming by SDP method , 2013 .

[65]  Marco A. López,et al.  Extended Active Constraints in Linear Optimization with Applications , 2003, SIAM J. Optim..

[66]  A. Kruger,et al.  Error Bounds: Necessary and Sufficient Conditions , 2010 .

[67]  Javier Peña,et al.  Static-arbitrage lower bounds on the prices of basket options via linear programming , 2010 .

[68]  Miguel A. Goberna,et al.  Primal Attainment in Convex Infinite Optimization Duality , 2014 .

[69]  Fabio Gagliardi Cozman,et al.  Kuznetsov independence for interval-valued expectations and sets of probability distributions: Properties and algorithms , 2014, Int. J. Approx. Reason..

[70]  Rubén Puente,et al.  Locally Farkas-Minkowski linear inequality systems , 1999 .

[71]  Vaithilingam Jeyakumar,et al.  An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs , 2017, J. Optim. Theory Appl..

[72]  Marco A. López,et al.  Ill-posedness with respect to the solvability in linear optimization , 2006 .

[73]  Michael J. Todd,et al.  Interior-point algorithms for semi-infinite programming , 1994, Math. Program..

[74]  Alireza Karimi,et al.  Fixed-order H∞ controller design for nonparametric models by convex optimization , 2010, Autom..

[75]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[76]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[77]  Soon-Yi Wu,et al.  A semi-infinite programming approach to two-stage stochastic linear programs with high-order moment constraints , 2018, Optim. Lett..

[78]  A. Iusem,et al.  Motzkin decomposition of closed convex sets via truncation , 2013 .

[79]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[80]  Mikael Rönnqvist,et al.  An empirical study on coalition formation and cost/savings allocation , 2012 .

[81]  Ivor W. Tsang,et al.  Towards ultrahigh dimensional feature selection for big data , 2012, J. Mach. Learn. Res..

[82]  Miguel A. Goberna,et al.  Motzkin decomposition of closed convex sets , 2010 .

[83]  Nader Kanzi,et al.  Optimality conditions in convex multiobjective SIP , 2016, Math. Program..

[84]  Marco A. López,et al.  New Farkas-type constraint qualifications in convex infinite programming , 2007 .

[85]  Marco A. López,et al.  On the Stability of the Feasible Set in Linear Optimization , 2001 .

[86]  Li He,et al.  An inexact stochastic optimization model for agricultural irrigation management with a case study in China , 2014, Stochastic Environmental Research and Risk Assessment.

[87]  Marco A. López,et al.  A New Exchange Method for Convex Semi-Infinite Programming , 2010, SIAM J. Optim..

[88]  He Ni,et al.  Multivariate convex support vector regression with semidefinite programming , 2012, Knowl. Based Syst..

[89]  Marco A. López,et al.  Isolated calmness of solution mappings in convex semi-infinite optimization☆ , 2009 .

[90]  Gerhard-Wilhelm Weber,et al.  On numerical optimization theory of infinite kernel learning , 2010, J. Glob. Optim..

[91]  I. K. Altinel,et al.  Mission-Based Component Testing for Series Systems , 2011, Ann. Oper. Res..

[92]  Ka Fai Cedric Yiu,et al.  A fast algorithm for the optimal design of high accuracy windows in signal processing , 2013, Optim. Methods Softw..

[93]  Vaithilingam Jeyakumar,et al.  Robust Solutions of MultiObjective Linear Semi-Infinite Programs under Constraint Data Uncertainty , 2014, SIAM J. Optim..

[94]  Olvi L. Mangasarian,et al.  Nonlinear Knowledge in Kernel Approximation , 2007, IEEE Transactions on Neural Networks.

[95]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[96]  Jinglai Shen,et al.  Positive Invariance of Constrained Affine Dynamics and Its Applications to Hybrid Systems and Safety Verification , 2012, IEEE Transactions on Automatic Control.

[97]  Jan H. Maruhn,et al.  A successive SDP-NSDP approach to a robust optimization problem in finance , 2009, Comput. Optim. Appl..

[98]  Xing Zhang,et al.  An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing , 2011 .

[99]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..

[100]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[101]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[102]  Feng Guo Semidefinite programming relaxations for linear semi-infinite polynomial programming , 2015, 1509.06394.

[103]  R. Correa,et al.  Weaker conditions for subdifferential calculus of convex functions , 2016 .

[104]  Maxim I. Todorov,et al.  A relaxation method for solving systems with infinitely many linear inequalities , 2010, Optimization Letters.

[105]  F. Javier Toledo-Moreo,et al.  Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization , 2014, Optimization Letters.

[106]  Vaithilingam Jeyakumar,et al.  A generalized Farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals , 2017 .

[107]  Olvi L. Mangasarian,et al.  Knowledge-Based Linear Programming , 2005, SIAM J. Optim..

[108]  M. J. Cánovas,et al.  Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .

[109]  Kung Fu Ng,et al.  Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming , 2009, SIAM J. Optim..

[110]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[111]  Timothy C. Y. Chan,et al.  Stability and Continuity in Robust Optimization , 2017, SIAM J. Optim..

[112]  Yong Shi,et al.  Recent advances on support vector machines research , 2012 .

[113]  E. Anderson,et al.  Linear programming in infinite-dimensional spaces : theory and applications , 1987 .

[114]  Miguel A. Goberna,et al.  Linear Semi-infinite Optimization: Recent Advances , 2005 .

[115]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings: A View from Variational Analysis , 2009 .

[116]  M. J. Cánovas,et al.  Critical Objective Size and Calmness Modulus in Linear Programming , 2015 .

[117]  Ezra Zeheb,et al.  Model reduction of uncertain systems retaining the uncertainty structure , 2005, Syst. Control. Lett..

[118]  Miguel A. Goberna,et al.  Constraint qualifications in convex vector semi-infinite optimization , 2016, Eur. J. Oper. Res..

[119]  Masahiko Sakai,et al.  Soundness of Unravelings for Conditional Term Rewriting Systems via Ultra-Properties Related to Linearity , 2012, Log. Methods Comput. Sci..

[120]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[121]  Zhi-Quan Luo,et al.  Complexity analysis of logarithmic barrier decomposition methods for semi-infinite linear programming , 1999 .

[122]  René Henrion,et al.  Problem-based optimal scenario generation and reduction in stochastic programming , 2017, Mathematical Programming.

[123]  M. D. Fajardo,et al.  Some results about the facial geometry of convex semi-infinite systems , 2006 .

[124]  Tamás Terlaky,et al.  An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application , 2011, Oper. Res..

[125]  Adrian S. Lewis,et al.  An extension of the simplex algorithm for semi-infinite linear programming , 1989, Math. Program..

[126]  I. K. Altinel,et al.  The design of mission-based component test plans for series connection of subsystems , 2013 .

[127]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .

[128]  A. Ridolfi,et al.  Stability of the Duality Gap in Linear Optimization , 2017 .

[129]  L. Qi,et al.  A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints , 2008 .

[130]  Oliver Stein,et al.  How to solve a semi-infinite optimization problem , 2012, Eur. J. Oper. Res..

[131]  Kenneth O. Kortanek,et al.  Classifying convex extremum problems over linear topologies having separation properties , 1974 .

[132]  Renjun Zhou,et al.  New approach for the nonlinear programming with transient stability constraints arising from power systems , 2010, Comput. Optim. Appl..

[133]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[134]  Moshe Dror,et al.  Managing decentralized inventory and transshipment , 2011 .

[135]  Radu Ioan Bot,et al.  SEQUENTIAL OPTIMALITY CONDITIONS IN CONVEX PROGRAMMING VIA PERTURBATION APPROACH , 2007 .

[136]  Y. Liu,et al.  Asymptotic optimality conditions for linear semi-infinite programming , 2016 .

[137]  M. Goberna,et al.  Modified Lagrangian duality for the supremum of convex functions , 2017 .

[138]  Amitabh Basu,et al.  On the sufficiency of finite support duals in semi-infinite linear programming , 2013, Oper. Res. Lett..

[139]  Robert L. Smith,et al.  A Shadow Simplex Method for Infinite Linear Programs , 2010, Oper. Res..

[140]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 1: A Reduction Theorem and First Order Conditions , 1979 .

[141]  Xiaoqi Yang,et al.  On error bound moduli for locally Lipschitz and regular functions , 2016, Math. Program..

[142]  Jean Lasserre,et al.  An algorithm for semi-infinite polynomial optimization , 2011, 1101.4122.

[143]  A. Charnes,et al.  On the theory of semi‐infinite programming and a generalization of the kuhn‐tucker saddle point theorem for arbitrary convex functions , 1969 .

[144]  Jens Krüger,et al.  CELLmicrocosmos 2.2 MembraneEditor: A Modular Interactive Shape-Based Software Approach To Solve Heterogeneous Membrane Packing Problems , 2011, J. Chem. Inf. Model..

[145]  Guo H. Huang,et al.  Bivariate interval semi-infinite programming with an application to environmental decision-making analysis , 2011, Eur. J. Oper. Res..

[146]  Peter Jonsson,et al.  Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..

[147]  Marco A. López,et al.  Stability in linear optimization and related topics. A personal tour , 2012 .

[148]  M. Powell Karmarkar's algorithm : a view from nonlinear programming , 1989 .

[149]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[150]  I. K. Altinel,et al.  Optimum component test plans for phased-mission systems , 2008, Eur. J. Oper. Res..

[151]  Guohe Huang,et al.  Optimization Model for Planning Regional Water Resource Systems under Uncertainty , 2014 .

[152]  Gabriela Alexe,et al.  On the relationship between the discrete and continuous bounding moment problems and their numerical solutions , 2016, Ann. Oper. Res..

[153]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems II: Upper Semicontinuity of the Solution Set Mapping , 1997, SIAM J. Optim..

[154]  C. D. Bisbos,et al.  Shakedown analysis of spatial frames with parameterized load domain , 2008 .

[155]  F. Javier Toledo-Moreo,et al.  Distance to Solvability/Unsolvability in Linear Optimization , 2006, SIAM J. Optim..

[156]  Yuan Tian,et al.  Strategy-Proof and Efficient Offline Interval Scheduling and Cake Cutting , 2013, WINE.

[157]  V. N. Vera de Serio,et al.  On Metric Regularity and the Boundary of the Feasible Set in Linear Optimization , 2014 .

[158]  Guohe Huang,et al.  Optimization of regional waste management systems based on inexact semi-infinite programming , 2008 .

[159]  Gerhard-Wilhelm Weber,et al.  Adapted Infinite Kernel Learning by Multi-Local Algorithm , 2016, Int. J. Pattern Recognit. Artif. Intell..

[160]  René Henrion,et al.  Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming , 2015, J. Optim. Theory Appl..

[161]  Edite Manuela da G. P. Fernandes,et al.  A sequential quadratic programming with a dual parametrization approach to nonlinear semi-infinite programming , 2003 .

[162]  F. Javier Toledo-Moreo,et al.  Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization , 2014, J. Optim. Theory Appl..

[163]  Emre Yamangil,et al.  Design of optimum component test plans in the demonstration of diverse system performance measures , 2011 .

[164]  Robert J. Vanderbei,et al.  Affine-Scaling Trajectories Associated with a Semi-Infinite Linear Program , 1995, Math. Oper. Res..

[165]  Jan H. Maruhn,et al.  Robust Static Super-Replication of Barrier Options , 2009 .

[166]  Dong-Hui Li,et al.  An iterative method for solving KKT system of the semi-infinite programming , 2005, Optim. Methods Softw..

[167]  Bruno Brosowski,et al.  Parametric semi-infinite optimization , 1982 .

[168]  Amitabh Basu,et al.  Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming , 2013, Math. Oper. Res..

[169]  Nelson A. Uhan Stochastic linear programming games with concave preferences , 2015, Eur. J. Oper. Res..

[170]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[171]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[172]  Edite M. G. P. Fernandes,et al.  SIPAMPL: Semi-infinite programming with AMPL , 2004, TOMS.

[173]  Michael J. Todd,et al.  Asymptotic Behavior of Interior-Point Methods: A View From Semi-Infinite Programming , 1996, Math. Oper. Res..

[174]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[175]  Maxim I. Todorov,et al.  Relaxation methods for solving linear inequality systems: converging results , 2012 .

[176]  Bruno Brosowski,et al.  Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .

[177]  Miguel A. Goberna,et al.  Primal-dual stability in continuous linear optimization , 2008, Math. Program..

[178]  Takashi Tsuchiya,et al.  Numerical experiments with universal barrier functions for cones of Chebyshev systems , 2008, Comput. Optim. Appl..

[179]  Ralf Werner,et al.  A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing , 2011 .

[180]  Lionel Thibault,et al.  Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .

[181]  Vaithilingam Jeyakumar,et al.  Robust solutions to multi-objective linear programs with uncertain data , 2014, Eur. J. Oper. Res..